scholarly journals A new magnesium sheet alloy and its multi-stage homogenization for simultaneously improved ductility and strength at room temperature

2019 ◽  
Vol 171 ◽  
pp. 92-97 ◽  
Author(s):  
Renhai Shi ◽  
Jiashi Miao ◽  
Alan A. Luo
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Renhai Shi ◽  
Jiashi Miao ◽  
Thomas Avey ◽  
Alan A. Luo

JOM ◽  
2021 ◽  
Author(s):  
Alan A. Luo ◽  
Renhai Shi ◽  
Jiashi Miao ◽  
Thomas Avey

2020 ◽  
Vol 830 ◽  
pp. 93-100
Author(s):  
Jae Dong Yoo ◽  
Tae Min Hwang ◽  
Man Soo Joun

Investigation into behaviors of aluminum alloy to be metal formed at the room temperature is conducted in this study. An index is used to evaluate the sensitivity of temperature, that is, index of relative normalized temperature rise to steel called normalized temperature rise index per steel which helps researchers to obtain some insight on new materials based on experiences of steel forging. An investigation to an aluminum alloy shows that the index is quite high, implying that temperature effect as well as rate-dependence effect on the forming processes of aluminum alloy at the room temperature cannot be neglected. Some details of thermomechanical predictions of a relatively high-speed automatic multi-stage forging process of a yoke with highly deformed region are given to reveal the importance of temperature and/or strain rate even in cold forging of aluminum alloy parts with high speed and high strain. All manuscripts must be in English, also the table and figure texts, otherwise we cannot publish your paper. Please keep a second copy of your manuscript in your office. When receiving the paper, we assume that the corresponding authors grant us the copyright to use the paper for the book or journal in question. Should authors use tables or figures from other Publications, they must ask the corresponding publishers to grant them the right to publish this material in their paper. Use italic for emphasizing a word or phrase. Do not use boldface typing or capital letters except for section headings (cf. remarks on section headings, below).


Author(s):  
Y. Huang ◽  
J. Huang ◽  
J. Cao

Magnesium alloy sheet has received increasing attention in automotive and aerospace industries. It is widely recognized that magnesium sheet has a poor formability at room temperature. While at elevated temperature, its formability can be dramatically improved. Most of work in the field has been working with the magnesium sheet after annealed around 350°C. In this paper, the as-received commercial magnesium sheet (AZ31B-H24) with thickness of 2mm has been experimentally studied without any special heat treatment. Uniaxial tensile tests at room temperature and elevated temperature were first conducted to have a better understanding of the material properties of magnesium sheet (AZ31B-H24). Then, limit dome height (LDH) tests were conducted to capture forming limits of magnesium sheet (AZ31B-H24) at elevated temperatures. An optical method has been introduced to obtain the stress-strain curve at elevated temperatures. Experimental results of the LDH tests were presented.


2014 ◽  
Vol 619 ◽  
pp. 378-383 ◽  
Author(s):  
Mahdi Habibnejad-korayem ◽  
Mukesh K. Jain ◽  
Raja K. Mishra

Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5300
Author(s):  
Jong Bok Byun ◽  
Mohd Kaswandee Razali ◽  
Chang Ju Lee ◽  
Il Dong Seo ◽  
Wan Jin Chung ◽  
...  

SUS304 stainless steel is characterized by combined tensile and compression testing, with an emphasis on flow stress at higher strain and temperature. The plastic deformation behavior of SUS304 from room temperature to 400 °C is examined and a general approach is used to express flow stress as a closed-form function of strain, strain rate, and temperature; this is optimal when the strain is high, especially during automatic multi-stage cold forging. The fitted flow stress is subjected to elastothermoviscoplastic finite element analysis (FEA) of an automatic multi-stage cold forging process for an SUS304 ball-stud. The importance of the thermal effect during cold forging, in terms of high material strength and good strain-hardening, is revealed by comparing the forming load, die wear and die stress predictions of non-isothermal and isothermal FEAs. The experiments have shown that the predictions of isothermal FEA are not feasible because of the high predicted effective stress on the weakest part of the die.


Sign in / Sign up

Export Citation Format

Share Document