Manchuriophycus-like elliptical cracks in thin mudstones intercalated with lacustrine sandstone: Intrastratal crack formation in water-saturated sediments

2020 ◽  
Vol 408 ◽  
pp. 105769
Author(s):  
D.-C. Lee ◽  
U.H. Byun ◽  
Y.K. Kwon ◽  
Y. Keehm ◽  
G.Y. Jeong ◽  
...  
Author(s):  
N.J. Tighe ◽  
H.M. Flower ◽  
P.R. Swann

A differentially pumped environmental cell has been developed for use in the AEI EM7 million volt microscope. In the initial version the column of gas traversed by the beam was 5.5mm. This permited inclusion of a tilting hot stage in the cell for investigating high temperature gas-specimen reactions. In order to examine specimens in the wet state it was found that a pressure of approximately 400 torr of water saturated helium was needed around the specimen to prevent dehydration. Inelastic scattering by the water resulted in a sharp loss of image quality. Therefore a modified cell with an ‘airgap’ of only 1.5mm has been constructed. The shorter electron path through the gas permits examination of specimens at the necessary pressure of moist helium; the specimen can still be tilted about the side entry rod axis by ±7°C to obtain stereopairs.


2018 ◽  
Vol 84 (12) ◽  
pp. 68-72
Author(s):  
A. B. Maksimov ◽  
I. P. Shevchenko ◽  
I. S. Erokhina

A method for separating the work of impact into two parts - the work of the crack nucleation and that of crack growth - which consists in testing two samples with the same stress concentrators and different cross-sectional dimensions at the notch site is developed. It is assumed that the work of crack nucleation is proportional to the width of the sample face on which the crack originates and the specific energy of crack formation, whereas the work of the crack growth is proportional to the length of crack development and the specific crack growth energy. In case of the sample fracture upon testing, the crack growth length is assumed equal to the sample width. Data on the work of fracture of two samples and their geometrical dimensions at the site of the notch are used to form a system of two linear equations in two unknowns, i.e., the specific energy of crack formation and specific energy of crack growth. The determined specific energy values are then used to calculate the work of crack nucleation and work of crack growth. The use of the analytical method improves the accuracy compared to graphical - extrapolative procedures. The novelty of the method consists in using one and the same form of the notch in test samples, thus providing the same conditions of the stress-strain state for crack nucleation and growth. Moreover, specimens with different cross-section dimensions are used to eliminate the scale effects. Since the specific energy of the crack nu-cleation and specific energy of the crack growth are independent of the scale factor, they are determined only by the properties of the metal. Introduction the specific energy of crack formation and growth makes possible to assign a specific physical meaning to the fracture energy.


2020 ◽  
Author(s):  
Farhan Ashraf ◽  
Andrea Cini ◽  
Gustavo M. Castelluccio

1997 ◽  
Vol 24 ◽  
pp. 181-185 ◽  
Author(s):  
Katsuhisa Kawashima ◽  
Tomomi Yamada

The densification of water-saturated firn, which had formed just above the firn-ice transition in the wet-snow zone of temperate glaciers, was investigated by compression tests under pressures ranging from 0.036 to 0.173 MPa, with special reference to the relationship between densification rate, time and pressure. At each test, the logarithm of the densification rate was proportional to the logarithm of the time, and its proportionality constant increased exponentially with increasing pressure. The time necessary for ice formation in the firn aquifer was calculated using the empirical formula obtained from the tests. Consequently, the necessary time decreased exponentially as the pressure increased, which shows that the transformation from firn in ice can be completed within the period when the firn aquifer exists, if the overburden pressure acting on the water-saturated firn is above 0.12–0.14 MPa. This critical value of pressure was in good agreement with the overburden pressure obtained from depth–density curves of temperate glaciers. It was concluded that the depth of firn–ice transition was self-balanced by the overburden pressure to result in the concentration between 20 and 30 m.


Wetlands ◽  
2021 ◽  
Vol 41 (6) ◽  
Author(s):  
Alba Cuena-Lombraña ◽  
Mauro Fois ◽  
Annalena Cogoni ◽  
Gianluigi Bacchetta

AbstractPlants are key elements of wetlands due to their evolutionary strategies for coping with life in a water-saturated environment, providing the basis for supporting nearly all wetland biota and habitat structure for other taxonomic groups. Sardinia, the second largest island of the Mediterranean Basin, hosts a great variety of wetlands, of which 16 are included in eight Ramsar sites. The 119 hydro- and hygrophilous vascular plant taxa from Sardinia represent the 42.6% and 37.9% of the number estimated for Italy and Europe, respectively. Moreover, around 30% of Sardinia’s bryological flora, which is made up of 498 taxa, is present in temporary ponds. An overview at regional scale considering algae is not available, to our knowledge, even though several specific studies have contributed to their knowledge. In order to find the most investigated research themes and wetland types, identify knowledge gaps and suggest recommendations for further research, we present a first attempt to outline the work that has been hitherto done on plants in lentic habitats in Sardinia. Three plant groups (algae, bryophytes and vascular plants), and five research themes (conservation, ecology, inventory, palaeobotany and taxonomy) were considered. After a literature review, we retained 202 papers published from 1960 to 2019. We found that studies on vascular plants, as plant group, were disproportionately more numerous, and inventories and ecology were the most investigated research themes. Although efforts have recently been made to fill these long-lasting gaps, there is a need for updating the existing information through innovative methods and integrative approaches.


Sign in / Sign up

Export Citation Format

Share Document