scholarly journals Evaluation of the potential energy savings of a centralized booster heat pump in front of conventional alternatives

Smart Energy ◽  
2021 ◽  
pp. 100056
Author(s):  
X. Masip ◽  
Carlos Prades-Gil ◽  
Emilio Navarro-Peris ◽  
J.M. Corberán
Solar Energy ◽  
2005 ◽  
Author(s):  
M. Palahanska-Mavrov ◽  
G. Wang ◽  
M. Liu

The water loop supply water temperature is the most critical control parameter for operating energy cost in water source heat pump systems. In this paper, the impact of the water loop temperature on operating energy cost is investigated for different types of buildings under different loads using theoretical models. The theoretical models and approaches are also applied to an 80,000 square feet office building to determine the building heating and cooling load, optimal supply water temperature, and potential energy cost savings based on measured supply water temperature and loop heat gain. It is concluded that the optimal supply water temperature control can significantly reduce the annual energy costs associated with compressor power and boiler energy. The potential energy savings is determined to be 24% in the application building.


2012 ◽  
Vol 9 (2) ◽  
pp. 65
Author(s):  
Alhassan Salami Tijani ◽  
Nazri Mohammed ◽  
Werner Witt

Industrial heat pumps are heat-recovery systems that allow the temperature ofwaste-heat stream to be increased to a higher, more efficient temperature. Consequently, heat pumps can improve energy efficiency in industrial processes as well as energy savings when conventional passive-heat recovery is not possible. In this paper, possible ways of saving energy in the chemical industry are considered, the objective is to reduce the primary energy (such as coal) consumption of power plant. Particularly the thermodynamic analyses ofintegrating backpressure turbine ofa power plant with distillation units have been considered. Some practical examples such as conventional distillation unit and heat pump are used as a means of reducing primary energy consumption with tangible indications of energy savings. The heat pump distillation is operated via electrical power from the power plant. The exergy efficiency ofthe primary fuel is calculated for different operating range ofthe heat pump distillation. This is then compared with a conventional distillation unit that depends on saturated steam from a power plant as the source of energy. The results obtained show that heat pump distillation is an economic way to save energy if the temperaturedifference between the overhead and the bottom is small. Based on the result, the energy saved by the application of a heat pump distillation is improved compared to conventional distillation unit.


2021 ◽  
pp. 1420326X2199241
Author(s):  
Hanlin Li ◽  
Dan Wu ◽  
Yanping Yuan ◽  
Lijun Zuo

In the past 30 years, tubular daylight guide systems (TDGSs) have become one of the most popular ways to transport outdoor natural light into the inner space in building design. However, tubular daylight guide systems are not widely used because of the lack of methods to evaluate methods on the suitability of the TDGSs. This study therefore summarizes the daylight performance metrics of TDGSs and presents the estimation methods in terms of field measurements, simulation and empirical formulae. This study focuses on the daylight performance and potential energy savings of TDGSs. Moreover, this study will be helpful for building designers to build healthy, comfortable and energy-saving indoor environment.


Energy Policy ◽  
2012 ◽  
Vol 45 ◽  
pp. 739-751 ◽  
Author(s):  
Jing Ke ◽  
Nina Zheng ◽  
David Fridley ◽  
Lynn Price ◽  
Nan Zhou

2021 ◽  
Author(s):  
Christopher L. K. Wang

As sleep is unconscious, the traditional definition of thermal comfort with conscious judgment does not apply. In this thesis sleep thermal comfort is defined as the thermal condition which enables sleep to most efficiently rejuvenate the body and mind. A comfort model was developed to stimulate the respective thermal environment required to achieve the desired body thermal conditions and a new infrared sphere method was developed to measure mean radiant temperature. Existing heating conditions according to building code conditions during sleeping hours was calculated to likely overheat a sleeping person and allowed energy saving potential by reducing nighttime heating set points. Experimenting with existing radiantly and forced air heated residential buildings, it was confirmed that thermal environment was too hot for comfortable sleep and that the infrared sphere method shows promise. With the site data, potential energy savings were calculated and around 10% of energy consumption reduction may be achieved during peak heating.


Sign in / Sign up

Export Citation Format

Share Document