Energy-efficient separation process and control scheme for extractive distillation of ethanol-water using deep eutectic solvent

2019 ◽  
Vol 219 ◽  
pp. 113-126 ◽  
Author(s):  
Qi Pan ◽  
Xianyong Shang ◽  
Jie Li ◽  
Shoutao Ma ◽  
Lumin Li ◽  
...  
Author(s):  
Eric Gaskell ◽  
Xiaobo Tan

Abstract Drifters are energy-efficient platforms for monitoring rivers and oceans. Prior work largely focused on free-floating drifters that drift passively with flow and have little or no controllability. In this paper we propose steerable drifters that use multiple rudders for modulating the hydrodynamic forces and thus maneuvering. A dynamic model for drifters with multiple rudders is presented. Simulation is conducted to examine the behavior of the drifter in two different flow conditions, uniform flow and parabolic flow. When there is no difference in relative flow between the rudders, as in uniform flow, the drifter can only be controlled until its velocity approaches that of the water. However, when present, local flow differentials can be exploited to initiate motion lateral to the ambient flow and control the trajectory of the drifter to some degree. The motion of the drifter is further classified as belonging to one of three major modes, rotational, oscillatory, and stable. The behavior of the drifter in a simulated river was mapped for different rudder angles. Identifying the parameters that induce each mode lays the groundwork for developing a feedback control scheme for the drifter.


2021 ◽  
pp. 106815
Author(s):  
Tao Zhang ◽  
Chengchao Li ◽  
Dongying Ma ◽  
Xiaodong Wang ◽  
Chaoyong Li

Author(s):  
Reyhane Mokhtarname ◽  
Ali Akbar Safavi ◽  
Leonhard Urbas ◽  
Fabienne Salimi ◽  
Mohammad M Zerafat ◽  
...  

Dynamic model development and control of an existing operating industrial continuous bulk free radical styrene polymerization process are carried out to evaluate the performance of auto-refrigerated CSTRs (continuous stirred tank reactors). One of the most difficult tasks in polymerization processes is to control the high viscosity reactor contents and heat removal. In this study, temperature control of an auto-refrigerated CSTR is carried out using an alternative control scheme which makes use of a vacuum system connected to the condenser and has not been addressed in the literature (i.e. to the best of our knowledge). The developed model is then verified using some experimental data of the real operating plant. To show the heat removal potential of this control scheme, a common control strategy used in some previous studies is also simulated. Simulation results show a faster dynamics and superior performance of the first control scheme which is already implemented in our operating plant. Besides, a nonlinear model predictive control (NMPC) is developed for the polymerization process under study to provide a better temperature control while satisfying the input/output and the heat exchanger capacity constraints on the heat removal. Then, a comparison has been also made with the conventional proportional-integral (PI) controller utilizing some common tuning rules. Some robustness and stability analyses of the control schemes investigated are also provided through some simulations. Simulation results clearly show the superiority of the NMPC strategy from all aspects.


2016 ◽  
Vol 21 (2) ◽  
pp. 1080-1091 ◽  
Author(s):  
Wesley Roozing ◽  
Zhibin Li ◽  
Gustavo A. Medrano-Cerda ◽  
Darwin G. Caldwell ◽  
Nikos G. Tsagarakis
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document