Planar-type micro-electromagnetic actuators using patterned thin film permanent magnets and mesh type coils

2014 ◽  
Vol 220 ◽  
pp. 365-372 ◽  
Author(s):  
Chao Zhi ◽  
Tadahiko Shinshi ◽  
Mikiko Saito ◽  
Kunio Kato
2016 ◽  
Vol 78 (9) ◽  
Author(s):  
Izzati Yusri ◽  
Mariam Md Ghazaly ◽  
Esmail Ali Ali Alandoli ◽  
Mohd Fua'ad Rahmat ◽  
Zulkeflee Abdullah ◽  
...  

This paper addresses a rotary motion type of electromagnetic actuator that compares two types of electromagnetic actuators; i.e the Permanent Magnet Switching Flux (PMSF) and the Switching Reluctance (SR) actuator. The Permanent Magnet Switching Flux (PMSF) actuator is the combination of permanent magnets (PM) and the Switching Reluctance (SR) actuator. The force optimizations are accomplished by manipulating the actuator parameters; i.e. (i) the poles ratio of the stator and rotor; (ii) the actuator’s size; (iii) the number of winding turns; and (iv) the air gap thickness between the stator and rotor through Finite Element Analysis Method (FEM) using the ANSYS Maxwell 3D software. The materials implemented in the actuator’s parameters optimizations are readily available materials, especially in Malaysia. The excitation current used in FEM analysis for both actuators was between 0A and 2A with interval of 0.25A. Based on the FEM analyses, the best result was achieved by the Permanent Magnet Switching Flux (PMSF) actuator. The PMSF actuator produced the largest magnetostatic thrust force (4.36kN) once the size is scaled up to 100% with the input current, 2A respectively. The maximum thrust force generated by the Switching Reluctance (SR) actuator was 168.85μN, which is significantly lower in compared to the results of the PMSF actuator. 


2012 ◽  
Vol 19 (01) ◽  
pp. 1250004
Author(s):  
A. SHANAGHI

Strontium hexaferrite was widely used in the fabrication of commercial permanent magnets and certain microwave devices. In this study, the strontium hexaferrite nanoparticle coatings were prepared by sol–gel method and using spin coating process on silicon substrate, then the effect of pH value, such as 5, 7 and 9, and calcination temperatures, such as 600°C, 800°C, and 1000°C, on structural and magnetic properties of strontium hexaferrite thin films were investigated by XRD, SEM and VSM measurements. The maximum saturation magnetization value of 57.43 emu/g and coercivity value of 3908 Oe were achieved for the thin film with crystallite size approximately 41 nm, prepared at pH value of 7 and calcinations temperature of 800°C.


2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744073
Author(s):  
L. Qin ◽  
Q. Li ◽  
Yong J. Yuan

This paper studies the fabrication of a novel planar electromagnet consisting of a planar copper coil and a magnetic yoke. CoFeB was used as the magnetic yoke material instead of the traditional permanent magnets. The planar electromagnet was fabricated and optimized to maximize the electromagnetic force, especially with varying CoFeB thickness. The micro-planar electromagnet was fabricated successfully by the traditional micro-electro-mechanical-system (MEMS) techniques and XRD, VSM were used to characterize the performance of the electromagnet. The planar electromagnet exhibits superior perpendicular magnetic anisotropy (PMA) and 0.006 emu of [Formula: see text] was achieved following 2 min deposition of CoFeB thin film. By integrating with other micro apparatuses, it is anticipated that the planar electromagnet will have potential applications in areas such as biosensors, biological medicine, drug delivery, chemical analysis and environmental monitoring.


2001 ◽  
Vol 17 (12) ◽  
pp. 1491-1499 ◽  
Author(s):  
J.S. Jiang ◽  
S.D. Bader
Keyword(s):  

Author(s):  
Mykhailo Panteliat ◽  
Artem Kuzmin

The purpose of the work is to improve mathematical models and algorithms of computer modeling of multiphysics processes in electromagnets and actuators of vacuum switching devices by taking into account the contact interaction of structural elements when changing their stress-strain state. In the design of modern vacuum circuit breakers and contactors, there is a significant use of electromagnetic actuators based on high-coercive hard magnetic rare earth composite materials NdFeB and SmCo. The most promising for use as drives of circuit breakers and contactors are polarized electromagnets based on the use of these high-coercive permanent magnets. However, the existing serial designs of electromagnets and actuators need to be significantly improved in order to increase reliability and service life, reduce weight and cost, further reduce energy consumption, improve the manufacturability of the mass production process. Computer simulation is proposed to be performed by the Finite Element Method in 2D formulation using commercial software products and/or software created directly for these investigations. One of the priority areas for improving mathematical models and algorithms for computer modeling of processes in the mechanical circuit of vacuum switching devices of medium and high voltage is to take into account the contact interaction of the structural elements of the devices under consideration. The next step, thanks to the use of an advanced mathematical model, is to perform a set of computational research and based on the obtained numerical results to develop recommendations aimed at creating designs of electromagnets and actuators that would meet world standards and be competitive in the world market.


Author(s):  
Kok-Meng Lee ◽  
Hungsun Son ◽  
Kun Bai

Many high-torque electromagnetic problems involve solving three dimensional (3D) magnetic fields of the permanent magnets (PMs) and/or electromagnet magnets (EMs) in the presence of magnetically conducting surfaces. This paper extends the distributed multi-pole (DMP) method, which offers a means to present the three-dimensional magnetic field solution in closed form, to account for the effects of the magnetic conducting boundary using an image method. We validate the DMP/image method by comparing the torques calculated using the Lorentz force equation and Maxwell stress tensor against numerical results computed using a finite element method (FEM). While two methods agree to within 5% in maximum torque, the DMP/image method takes less than 1% of the FEM computation time. With the numerically validated torque computation, we demonstrate how the DMP/image method can be used to analyze designs of a spherical wheel motor as illustrative practical applications.


Sign in / Sign up

Export Citation Format

Share Document