Detection of arginase through the optical behaviour of liquid crystals due to the pH-dependent adsorption of stearic acid at the aqueous/liquid crystal interface

2021 ◽  
pp. 129906
Author(s):  
Thai Duong Song Duong ◽  
Chang-Hyun Jang
2013 ◽  
Vol 40 (12) ◽  
pp. 1730-1735 ◽  
Author(s):  
Dong Chen ◽  
Renfan Shao ◽  
Joseph E. Maclennan ◽  
Matthew A. Glaser ◽  
Eva Korblova ◽  
...  

2021 ◽  
Vol 2070 (1) ◽  
pp. 012038
Author(s):  
Vandna Sharma ◽  
Pankaj Kumar

Abstract The alignment of liquid crystal inside the droplets highly influences the electro-optical behaviour of polymer dispersed liquid crystals (PDLCs). In PDLCs with initial transparent state, LC droplets exhibit homeotropic boundary conditions with darker zone at the centre with ring shaped boundary. In the present work, the textures were observed under parallel and crossed polarizers. The captured information revealed that there are no changes in the central zone of the droplets due to the perfect homeotropic alignment of liquid crystals inside the droplet. The count of the droplets with different ranges was measured using ImageJ software. Further, the effect of electric field on textural variation inside the droplets, measuring the ratio of the size of darker zone to the size of droplet (a/d) was analysed by applying image processing. The response curve was obtained for different range of sizes of droplets from the plot of a/d ratio vs applied voltage and found supportive to the measure of the textural variation inside the LC droplets. Therefore, the a/d ratio can be the valuable parameter for optimizing the parameters such as droplet size, area of darker zone and required voltage for energy efficient PDLC devices.


2017 ◽  
Vol 13 (2) ◽  
pp. 4705-4717
Author(s):  
Zhang Qian ◽  
Zhou Xuan ◽  
Zhang Zhidong

Basing on Landau–de Gennes theory, this study investigated the chiral configurations of nematic liquid crystals confined to cylindrical capillaries with homeotropic anchoring on the cylinder walls. When the elastic anisotropy (L2/L1) is large enough, a new structure results from the convergence of two opposite escape directions of the heterochiral twist and escape radial (TER) configurations. The new defect presents when L2/L1≥7 and disappears when L2/L1<7. The new structure possesses a heterochiral hyperbolic defect at the center and two homochiral radial defects on both sides. The two radial defects show different chiralities.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 247
Author(s):  
Rowan Morris ◽  
Cliff Jones ◽  
Mamatha Nagaraj

Liquid crystals are valuable materials for applications in beam steering devices. In this paper, an overview of the use of liquid crystals in the field of adaptive optics specifically for beam steering and lensing devices is presented. The paper introduces the properties of liquid crystals that have made them useful in this field followed by a more detailed discussion of specific liquid crystal devices that act as switchable optical components of refractive and diffractive types. The relative advantages and disadvantages of the different devices and techniques are summarised.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 678
Author(s):  
Yuqi Han ◽  
Yan Jiang ◽  
Wei Guo ◽  
Bing Li ◽  
Lu Zhang ◽  
...  

Based on the anchoring effect due to the self-assembling behavior of the phospholipid molecules at the interface between the liquid crystal and water phases on the orientation of liquid crystals, the optical response associated with the orientation and structure of liquid crystals with respect to the concentration of 1,2-didodecanoyl-sn-glycero-3-phosphocholine solution has been investigated. The optical response owing to changes in the orientation and structure of the mixed cholesteric liquid crystals with respect to the change in the concentration of phosphatidylcholine has been obtained. Moreover, the feasibility of using as-prepared mixed cholesteric liquid crystals to measure the phosphatidylcholine concentration has been verified. A methodology to measure the reflectance spectrum by using mixed cholesteric liquid crystals to sensitize the phosphatidylcholine concentration has been further realized. The sensitization effect of the mixed cholesteric liquid crystals on the measurement of phosphatidylcholine concentration was also verified.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 908
Author(s):  
Fabrizio Ciciulla ◽  
Annamaria Zaltron ◽  
Riccardo Zamboni ◽  
Cinzia Sada ◽  
Francesco Simoni ◽  
...  

In this study, we present a new configuration of the recently reported optofluidic platform exploiting liquid crystals reorientation in lithium niobate channels. In order to avoid the threshold behaviour observed in the optical control of the device, we propose microchannels realized in a x-cut crystal closed by a z-cut crystal on the top. In this way, the light-induced photovoltaic field is not uniform inside the liquid crystal layer and therefore the conditions for a thresholdless reorientation are realized. We performed simulations of the photovoltaic effect based on the well assessed model for Lithium Niobate, showing that not uniform orientation and value of the field should be expected inside the microchannel. In agreement with the re-orientational properties of nematic liquid crystals, experimental data confirm the expected thresholdless behaviour. The observed liquid crystal response exhibits two different regimes and the response time shows an unusual dependence on light intensity, both features indicating the presence of additional photo-induced fields appearing above a light intensity of 107 W/m2.


Author(s):  
Cengiz Camci ◽  
Boris Glezer

The liquid crystal thermography can be successfully used in both transient and steady-state heat transfer experiments with excellent spatial resolution and good accuracy. Although most of the past liquid crystal based heat transfer studies are reported in the stationary frame, measurements from the rotating frame of turbomachinery systems exist The main objective of the present investigation is to determine the influence of rotation on the color calibration of encapsulated liquid crystals sprayed on the flat surface of a rotating aluminum disk. The investigation is performed for a rotational speed range from 0 rpm to 7500 rpm using three different liquid crystal coatings displaying red at 30, 35 and 45° C, under stationary conditions. An immediate observation from the present study is that the color response of liquid crystals is strongly modified by the centrifugal acceleration of the rotating environment. It is consistently and repeatedly observed that the hue versus temperature curve is continuously shifted toward lower temperatures by increasing rotational speed. The relative shift of the display temperature of the green can be as high as 7°C at 7500 rpm when compared to the temperature of the green observed under stationary conditions. The present study shows that relative shift of the liquid crystal color has a well-defined functional dependency to rotational speed. The shift is linearly proportional to the centrifugal acceleration. It is interesting to note that the individual shift curves of the green for all three liquid crystal coatings collapse into a single curve when they are normalized with respect to their own stationary green values. When the color attribute is selected as “intensity” instead of “hue”, very similar shifts of the temperature corresponding to the intensity maximum value appearing around green is observed. An interpretation of the observed color shift is made from a thermodynamics energy balance point of view.


The line broadening in the electron resonance spectra of monoradicals dissolved in anisotropic media, such as liquid crystals, provides a valuable probe of both the orientational order and the molecular dynamics. However, the fast-motion relaxation theory employed to extract this information from the linewidths assumes that the nuclear spin is quantized along the direction of the magnetic field. This approximation is only correct when the symmetry axis of a uniaxial liquid crystal is either parallel or perpendicular to the field. We have therefore removed this assumption and have developed a general theory of line broadening valid for all orientations of the liquid crystal. The theory is then used to evaluate the angular dependence of the linewidths and this is compared with the dependence predicted by the approximate theory, for two classes of nitroxide spin probes. These comparisons reveal that for steroidal spin probes the error, introduced by assuming the nuclear spin to be quantized along the field, is confined to the dynamic properties derived from the linewidths. In contrast, significant errors appear in both the dynamic and static properties obtained from an analysis of the linewidth variations for fatty acid spin probes based on the approximate theory. It would seem that the exact theory must be employed to obtain precise information from linewidth investigations of liquid crystals, except when the orientational order is extremely small.


Sign in / Sign up

Export Citation Format

Share Document