scholarly journals Color Response Modification of Encapsulated Liquid Crystals Used in Rotating Disk Heat Transfer Studies

Author(s):  
Cengiz Camci ◽  
Boris Glezer

The liquid crystal thermography can be successfully used in both transient and steady-state heat transfer experiments with excellent spatial resolution and good accuracy. Although most of the past liquid crystal based heat transfer studies are reported in the stationary frame, measurements from the rotating frame of turbomachinery systems exist The main objective of the present investigation is to determine the influence of rotation on the color calibration of encapsulated liquid crystals sprayed on the flat surface of a rotating aluminum disk. The investigation is performed for a rotational speed range from 0 rpm to 7500 rpm using three different liquid crystal coatings displaying red at 30, 35 and 45° C, under stationary conditions. An immediate observation from the present study is that the color response of liquid crystals is strongly modified by the centrifugal acceleration of the rotating environment. It is consistently and repeatedly observed that the hue versus temperature curve is continuously shifted toward lower temperatures by increasing rotational speed. The relative shift of the display temperature of the green can be as high as 7°C at 7500 rpm when compared to the temperature of the green observed under stationary conditions. The present study shows that relative shift of the liquid crystal color has a well-defined functional dependency to rotational speed. The shift is linearly proportional to the centrifugal acceleration. It is interesting to note that the individual shift curves of the green for all three liquid crystal coatings collapse into a single curve when they are normalized with respect to their own stationary green values. When the color attribute is selected as “intensity” instead of “hue”, very similar shifts of the temperature corresponding to the intensity maximum value appearing around green is observed. An interpretation of the observed color shift is made from a thermodynamics energy balance point of view.

1997 ◽  
Vol 119 (1) ◽  
pp. 20-29 ◽  
Author(s):  
C. Camci ◽  
B. Glezer

Liquid crystal thermography is an effective method widely employed in transient and steady-state heat transfer experiments with excellent spatial resolution and good accuracy. Most of the past studies in liquid crystal thermography deal with stationary conditions. The present investigation deals with the influence of rotation on the color response of encapsulated liquid crystals attached to a flat rotating surface. A general methodology developed for the application of thermochromic liquid crystals in rotating systems is described for the first time. The investigation is performed for a rotational speed range from 0 to 7500 rpm using two different coatings displaying red at 30° and 45°C, under stationary conditions. Local liquid crystal color on the surface of a rotating disk is correlated with local temperature as measured by a non-intrusive infrared sensor at various rotational speeds. An immediate observation from the present study is that the color response (hue) of encapsulated liquid crystals is not altered by either the centrifugal acceleration of the rotating environment or the aerodynamic friction force at the rotating disk-air interface. Present investigation also shows that when a stroboscope light is introduced, the color response is not significantly altered due to additional periodic illumination. A complete and general experimental methodology including rotating surfaces with non-axisymmetric temperature distribution is presented. Results from the current liquid crystal technique agree well with the theoretical adiabatic temperature rise of a free rotating disk as predicted by an analytical method.


2000 ◽  
Vol 122 (4) ◽  
pp. 709-716 ◽  
Author(s):  
S. M. Guo ◽  
C. C. Lai ◽  
T. V. Jones ◽  
M. L. G. Oldfield ◽  
G. D. Lock ◽  
...  

The influence of surface roughness on heat transfer coefficient and cooling effectiveness for a fully film cooled three-dimensional nozzle guide vane (NGV) has been measured in a transonic annular cascade using wide band liquid crystal and direct heat flux gages (DHFGs). The liquid crystal methods were used for rough surface measurements and the DHFGs were used for the smooth surfaces. The measurements have been made at engine representative Mach and Reynolds numbers and inlet free-stream turbulence intensity. The aerodynamic and thermodynamic characteristics of the coolant flow have been modeled to represent engine conditions by using a heavy “foreign gas” (30.2 percent SF6 and 69.8 percent Ar by weight). Two cooling geometries (cylindrical and fan-shaped holes) have been tested. The strategies of obtaining accurate heat transfer data using a variety of transient heat transfer measurement techniques under the extreme conditions of transonic flow and high heat transfer coefficient are presented. The surfaces of interest are coated with wide-band thermochromic liquid crystals, which cover the range of NGV surface temperature variation encountered in the test. The liquid crystal has a natural peak-to-peak roughness height of 25 μm creating a transitionally rough surface on the NGV. The time variation of color is processed to give distributions of both heat transfer coefficient and film cooling effectiveness over the NGV surface. The NGV was first instrumented with the DHFGs and smooth surface tests preformed. Subsequently the surface was coated with liquid crystals for the rough surface tests. The DHFGs were then employed as the means of calibrating the liquid crystal layer. The roughness of 25 μm, which is the typical order of roughness for the in-service turbine blades and vanes, increases the heat transfer coefficient by up to 50 percent over the smooth surface level. The film cooling effectiveness is influenced less by the roughness. [S0889-504X(00)00804-7]


Author(s):  
Cécile Zakri ◽  
Christophe Blanc ◽  
Eric Grelet ◽  
Camilo Zamora-Ledezma ◽  
Nicolas Puech ◽  
...  

Liquid crystal ordering is an opportunity to develop novel materials and applications with spontaneously aligned nanotubes or graphene particles. Nevertheless, achieving high orientational order parameter and large monodomains remains a challenge. In addition, our restricted knowledge of the structure of the currently available materials is a limitation for fundamental studies and future applications. This paper presents recent methodologies that have been developed to achieve large monodomains of nematic liquid crystals. These allow quantification and increase of their order parameters. Nematic ordering provides an efficient way to prepare conductive films that exhibit anisotropic properties. In particular, it is shown how the electrical conductivity anisotropy increases with the order parameter of the nematic liquid crystal. The order parameter can be tuned by controlling the length and entanglement of the nanotubes. In the second part of the paper, recent results on graphene liquid crystals are reported. The possibility to obtain water-based liquid crystals stabilized by surfactant molecules is demonstrated. Structural and thermodynamic characterizations provide indirect but statistical information on the dimensions of the graphene flakes. From a general point of view, this work presents experimental approaches to optimize the use of nanocarbons as liquid crystals and provides new methodologies for the still challenging characterization of such materials.


1993 ◽  
Vol 115 (2) ◽  
pp. 311-318 ◽  
Author(s):  
C. Camci ◽  
K. Kim ◽  
S. A. Hippensteele ◽  
P. E. Poinsatte

Accurate determination of convective heat transfer coefficients on complex curved surfaces is essential in the aerothermal design and analysis of propulsion system components. The heat transfer surfaces are geometrically very complex in most of the propulsion applications. This study focuses on the evaluation of a hue capturing technique for the heat transfer interpretation of liquid crystal images from a complex curved heat transfer surface. Impulsively starting heat transfer experiments in a square to rectangular transition duct are reported. The present technique is different from existing steady-state hue capturing studies. A real-time hue conversion process on a complex curved surface is adopted for a transient heat transfer technique with high spatial resolution. The study also focuses on the use of encapsulated liquid crystals with narrow color band in contrast to previous steady-state hue based techniques using wide band liquid crystals. Using a narrow band crystal improves the accuracy of the heat transfer technique. Estimated uncertainty for the heat transfer coefficient from the technique is about 5.9 percent. A complete heat transfer map of the bottom surface was possible using only seven liquid crystal image frames out of the 97 available frames during the transient experiment. Significant variations of heat transfer coefficients are quantitatively visualized on the curved surfaces of the transition duct.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
A.S. Ayriyan ◽  
◽  
E.A. Ayryan ◽  
A.A. Egorov ◽  
◽  
...  

In this paper, we numerically investigate a two-dimensional differential equation describing the motion of a director of a nematic liquid crystal for the case of an alternating external electric field. The presence of the previously discovered accumulation effect has been confirmed by numerical modeling. A comparison is made with the case of a constant electric field, and also a qualitative comparison with an experiment is given. Incomplete agreement with experimental data indicates the need for further research. However, it should be noted that the constructed mathematical model of the phenomenon allows at this stage to obtain estimates that are sufficiently acceptable for experiment and correctly predict the dynamics of processes in liquid crystals. An analysis of the features of the propagation of quasi-waveguide modes in a liquid crystal waveguide showed that, in the case of dynamic processes, such effects as power exchange between coupled modes, leakage of modes, re-emission of modes into modes of a different order, etc., can be observed. The programs for numerical solution and computer modeling of two-dimensional parabolic partial differential equation were developed both in FORTRAN and C/C++. The results obtained are important for further investigation of dynamic processes inside non-stationary liquid crystal layers, both from a theoretical point of view for understanding kinetic processes in liquid crystals and from a practical point of view when organizing and conducting different experimental research.


Author(s):  
S. M. Guo ◽  
C. C. Lai ◽  
T. V. Jones ◽  
M. L. G. Oldfield ◽  
G. D. Lock ◽  
...  

The influence of surface roughness on heat transfer coefficient and cooling effectiveness for a fully film cooled 3D nozzle guide vane (NGV) has been measured in a transonic annular cascade using wide band liquid crystal and direct heat flux gauges (DHFGs). The liquid crystal methods were used for rough surface measurements and the DHFGs were used for the smooth surfaces. The measurements have been made at engine representative Mach and Reynolds numbers and inlet freestream turbulence intensity. The aerodynamic and thermodynamic characteristics of the coolant flow have been modelled to represent engine conditions by using a heavy “foreign gas” (30.2% SF6 and 69.8% Ar by weight). Two cooling geometries (cylindrical and fan-shaped holes) have been tested. The strategies of obtaining accurate heat transfer data using a variety of transient heat transfer measurement techniques under the extreme conditions of transonic flow and high heat transfer coefficient are presented. The surfaces of interest are coated with wide-band thermochromic liquid crystals which cover the range of NGV surface temperature variation encountered in the test. The liquid crystal has a natural peak-to-peak roughness height of 25 μm creating a transitionally rough surface on the NGV. The time variation of colour is processed to give distributions of both heat transfer coefficient and film cooling effectiveness over the NGV surface. The NGV was first instrumented with the DHFGs and smooth surface tests preformed. Subsequently the surface was coated with liquid crystals for the rough surface tests. The DHFGs were then employed as the means of calibrating the liquid crystal layer. The roughness of 25 μm, which is the typical order of roughness for the in service turbine blades and vanes, increases the heat transfer coefficient by up to 50% over the smooth surface level. The film cooling effectiveness is influenced less by the roughness.


1999 ◽  
Author(s):  
Anthony W. Guile ◽  
Roy Garwood ◽  
John Ward

Abstract A liquid crystal technique has been applied to the problem of convective heat transfer downstream of a circular to square abrupt expansion. This configuration is similar to that found with a burner firing into a furnace or boiler. There is little data available in the literature for these expansions as most previous investigations have concentrated on a simple circular to circular geometry. Liquid crystals were selected for the tests because of their ability to provide a full surface temperature map with a high spatial resolution. With the progress of image capture and processing technology a transient test method was preferred as it makes the construction of models very simple by eliminating the need to heat the surface with the inherent problem of uniformity and the difficulty in viewing the surface. The application of liquid crystals produced results which were found to be accurate and repeatable, when compared with results obtained from other investigations in the area. It gave quantitative data, allowing spanwise and axial distributions of heat transfer to be calculated in these geometries. The hue capturing technique thus provides quantitative, accurate and repeatable temperature measurements, and when applied to heat transfer problems is a powerful experimental tool.


1975 ◽  
Vol 97 (3) ◽  
pp. 442-450 ◽  
Author(s):  
T. E. Cooper ◽  
R. J. Field ◽  
J. F. Meyer

A thermographic technique is presented that allows visual determination of both qualitative and quantitative heat transfer and fluid flow information to be obtained on heated objects placed in forced convection environments. The technique employs cholesteric liquid crystals as the temperature sensing agent. The liquid crystals indicate temperature by exhibiting brilliant changes in color over discrete, reproducible temperature ranges. The technique has been used to quickly and easily obtain information on the variation of the Nusselt number on a right circular cylinder placed in a crossflow of air. In addition to yielding precise quantitative heat transfer information, the liquid crystal thermographic technique afforded the opportunity to visually observe the effects of flow separation, the separation bubble region, the turbulent boundary layer, and the turbulent wake on the surface temperature of the heated cylinder. The experimental results obtained using the liquid crystal thermographic technique are in close agreement with results obtained by other investigators who have used standard measuring techniques.


Author(s):  
Prashant Singh ◽  
Srinath V. Ekkad

The present study investigates the effects of Coriolis force and centrifugal buoyancy force on heat transfer due to jet impingement on dimpled target surface (DT). Detailed heat transfer measurements were carried out using transient liquid crystal (LC) thermography, where the target surface was modeled as one-dimensional (1D) semi-infinite solid. Three different configurations of DT surfaces have been studied. The flow and rotation conditions have been kept the same for all the configurations, where the average Reynolds number (based on jet hole hydraulic diameter: Rej) was 2500 and the rotational speed was 400 rpm (corresponding to Roj of 0.00274). Under nonrotating conditions, DT surface showed positive heat transfer enhancements compared to smooth target surfaces. Under rotating conditions, it was observed that rotation was helpful in enhancing heat transfer on leading and trailing sides for smooth target surface. However, for the DT surfaces, rotation proved to be detrimental to heat transfer enhancement.


Sign in / Sign up

Export Citation Format

Share Document