Line broadening in the electron resonance spectra of spin probes dissolved in anisotropic media: the effect of nuclear spin quantization

The line broadening in the electron resonance spectra of monoradicals dissolved in anisotropic media, such as liquid crystals, provides a valuable probe of both the orientational order and the molecular dynamics. However, the fast-motion relaxation theory employed to extract this information from the linewidths assumes that the nuclear spin is quantized along the direction of the magnetic field. This approximation is only correct when the symmetry axis of a uniaxial liquid crystal is either parallel or perpendicular to the field. We have therefore removed this assumption and have developed a general theory of line broadening valid for all orientations of the liquid crystal. The theory is then used to evaluate the angular dependence of the linewidths and this is compared with the dependence predicted by the approximate theory, for two classes of nitroxide spin probes. These comparisons reveal that for steroidal spin probes the error, introduced by assuming the nuclear spin to be quantized along the field, is confined to the dynamic properties derived from the linewidths. In contrast, significant errors appear in both the dynamic and static properties obtained from an analysis of the linewidth variations for fatty acid spin probes based on the approximate theory. It would seem that the exact theory must be employed to obtain precise information from linewidth investigations of liquid crystals, except when the orientational order is extremely small.

Author(s):  
Cécile Zakri ◽  
Christophe Blanc ◽  
Eric Grelet ◽  
Camilo Zamora-Ledezma ◽  
Nicolas Puech ◽  
...  

Liquid crystal ordering is an opportunity to develop novel materials and applications with spontaneously aligned nanotubes or graphene particles. Nevertheless, achieving high orientational order parameter and large monodomains remains a challenge. In addition, our restricted knowledge of the structure of the currently available materials is a limitation for fundamental studies and future applications. This paper presents recent methodologies that have been developed to achieve large monodomains of nematic liquid crystals. These allow quantification and increase of their order parameters. Nematic ordering provides an efficient way to prepare conductive films that exhibit anisotropic properties. In particular, it is shown how the electrical conductivity anisotropy increases with the order parameter of the nematic liquid crystal. The order parameter can be tuned by controlling the length and entanglement of the nanotubes. In the second part of the paper, recent results on graphene liquid crystals are reported. The possibility to obtain water-based liquid crystals stabilized by surfactant molecules is demonstrated. Structural and thermodynamic characterizations provide indirect but statistical information on the dimensions of the graphene flakes. From a general point of view, this work presents experimental approaches to optimize the use of nanocarbons as liquid crystals and provides new methodologies for the still challenging characterization of such materials.


2016 ◽  
Vol 18 (4) ◽  
pp. 2428-2441 ◽  
Author(s):  
Silvia Orlandi ◽  
Erika Benini ◽  
Isabella Miglioli ◽  
Dean R. Evans ◽  
Victor Reshetnyak ◽  
...  

Molecular-scale Monte Carlo simulations of liquid crystal-nanoparticle dispersions show the effect on the orientational order and on the clearing temperature of shape and concentration of the dopant nanoparticles.


1987 ◽  
Vol 42 (11) ◽  
pp. 1296-1304 ◽  
Author(s):  
B. Kirste

A detailed ENDOR study of anisotropic proton hyperfine shifts in the nitroxide spin probe 3-doxylcholestane (CSL) in liquid-crystalline solution is described. The data are interpreted by means of theoretically calculated proton hyperfine tensors (McConnell-Strathdee-Derbyshire treatment), providing an independent check of the ordering matrix. The orientational order and the dynamic behavior of the nematic and smectic phases of the liquid crystals (40,6), (50,6), and 8CB are investigated by EPR using CSL and phenalenyl as spin probes.


1989 ◽  
Vol 67 (1) ◽  
pp. 54-59 ◽  
Author(s):  
C. T. Yim ◽  
D. F. R. Gilson

The orientational order parameters of ortho-, meta-, and para-dichlorobenzene, dissolved in the nematic solvents EBBA and 1132, have been measured as functions of temperature and concentration, and used to determine the values of the potential energy parameters for each solute–solvent pair. These potentials have been interpreted in terms of a short-range contribution, which depends upon the shape and size of the solute molecule, plus a long-range term due to the interaction between the average electric field gradient from the solvent and the molecular quadrupole moment of the solute. Keywords: dichlorobenzenes, nematic solvents, liquid crystals, orientation, potential energy parameters.


MRS Bulletin ◽  
1995 ◽  
Vol 20 (9) ◽  
pp. 29-36 ◽  
Author(s):  
Mary Jane E. O'Rourke ◽  
Edwin L. Thomas

The liquid crystal phase is an anisotropic mesophase, intermediate in order between the liquid and crystal phases. Liquid crystals have less translational order than crystals and more rotational order than isotropic liquids. The liquid crystal phase does not support finite shear stresses and thus behaves like a fluid. Molecules that display a liquid crystal phase are referred to as mesogenic. Mesogenic molecules exhibit shape anisotropy: either large length to diameter ratio (needlelike) or large diameter to thickness ratio (disklike). Because of their shape anisotropy, all liquid crystals display orientational order of their molecular axes.Until 1956, all known examples of liquid crystals were low molecular weight compounds. Robinson was the first to identify liquid crystallinity in a liquid crystalline polymer (LCP) as the explanation for “a birefringent solution” of a polymeric material, poly-y-benzyl-L-glutamate, in chloroform, previously observed by Elliott and Ambrose. Chemists soon discovered that LCPs may be readily synthesized by covalently stitching small mesogenic units (e.g., rigid monomers) together into a chain using short flexible spacers. Mainchain or sidechain liquid crystal polymers may be formed (Figure 1). An example of a polymer molecule possessing a liquid crystal phase is shown in Figure 2. Liquid crystals may be thermotropic, where liquid crystallinity is exhibited over a range of temperatures, or lyotropic, where nonmesogenic solvent molecules are present in addition to the mesogens, and liquid crystallinity is observed over a range of concentrations as well.


2018 ◽  
Vol 60 (4) ◽  
pp. 805
Author(s):  
Л.А. Добрун ◽  
А.П. Ковшик ◽  
Е.И. Рюмцев ◽  
А.А. Калинкин

AbstractIn this study, we have for the first time determined the degree of an orientational order S for a series of liquid-crystal complexes based on lanthanides (Eu^+3, Gd^+3, Tb^+3, Dy^+3) with the same ligand composition in the temperature range of existence of the nematic phase by using experimental refractometry results. We have also found an even-odd alternative S as number of protons in the ions complexing agent has consecutively increased. The obtained values of S have been compared with the corresponding degrees of order of the calamite organic liquid crystals.


Sign in / Sign up

Export Citation Format

Share Document