Multiplexed detection of bladder cancer microRNAs based on core-shell-shell magnetic quantum dot microbeads and cascade signal amplification

2021 ◽  
pp. 130824
Author(s):  
Junwen Xu ◽  
Xiaowei Wei ◽  
Xiao Zhang ◽  
Yong Wei ◽  
Wei Lui ◽  
...  
2021 ◽  
Vol 22 (3) ◽  
pp. 1068
Author(s):  
Katarzyna Dominika Kania ◽  
Waldemar Wagner ◽  
Łukasz Pułaski

Two immortalized brain microvascular endothelial cell lines (hCMEC/D3 and RBE4, of human and rat origin, respectively) were applied as an in vitro model of cellular elements of the blood–brain barrier in a nanotoxicological study. We evaluated the impact of CdSe/ZnS core-shell-type quantum dot nanoparticles on cellular homeostasis, using gold nanoparticles as a largely bioorthogonal control. While the investigated nanoparticles had surprisingly negligible acute cytotoxicity in the evaluated models, a multi-faceted study of barrier-related phenotypes and cell condition revealed a complex pattern of homeostasis disruption. Interestingly, some features of the paracellular barrier phenotype (transendothelial electrical resistance, tight junction protein gene expression) were improved by exposure to nanoparticles in a potential hormetic mechanism. However, mitochondrial potential and antioxidant defences largely collapsed under these conditions, paralleled by a strong pro-apoptotic shift in a significant proportion of cells (evidenced by apoptotic protein gene expression, chromosomal DNA fragmentation, and membrane phosphatidylserine exposure). Taken together, our results suggest a reactive oxygen species-mediated cellular mechanism of blood–brain barrier damage by quantum dots, which may be toxicologically significant in the face of increasing human exposure to this type of nanoparticles, both intended (in medical applications) and more often unintended (from consumer goods-derived environmental pollution).


2017 ◽  
Vol 12 (1) ◽  
Author(s):  
Bo Li ◽  
Meilin Lu ◽  
Weilong Liu ◽  
Xiaojun Zhu ◽  
Xing He ◽  
...  

2015 ◽  
Vol 107 (10) ◽  
pp. 103902 ◽  
Author(s):  
Darren C. J. Neo ◽  
Samuel D. Stranks ◽  
Giles E. Eperon ◽  
Henry J. Snaith ◽  
Hazel E. Assender ◽  
...  

2017 ◽  
Vol 100 (4) ◽  
pp. 950-961 ◽  
Author(s):  
María Pedrero ◽  
Susana Campuzano ◽  
José M Pingarrón

Abstract The determination of organic and inorganic environmental and food pollutants is a key matter of concern in analytical chemistry due to their effects as a serious threat to human health. Focusing on this issue, several methodologies involving the use of nanostructured electrochemical platforms have been recently reported in the literature. Among these methods, those employing the use of quantum dots (QDs) stand out because of features such as signal amplification, good reproducibility and selectivity, and the possibility for multiplexed detection, and because they preserve the outstanding characteristics of electrochemical methodologies with respect to simplicity, ease-of-use, and cost-effective instrumentation. This review describes recent electrochemical strategies, in which design QDs play a key role, for the determination of pollutants in food and environmental samples. The particular role of QDs in the reported methodologies, their preparation, and the electrochemical platform design, as well as the advantages that QDs provide in the analysis of target analytes, are critically discussed.


2018 ◽  
Vol 33 (11) ◽  
pp. 737-747
Author(s):  
Ting-ting Li ◽  
Tomoya Inose ◽  
Takahiro Oikawa ◽  
Masayuki Tokunaga ◽  
Keiichiro Hatoyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document