Detection of vapors from overheated PVC cables with modified sea urchin-like ZnO for fire warning

2022 ◽  
Vol 350 ◽  
pp. 130841
Author(s):  
Zhou Li ◽  
Jia Han ◽  
Wenjia Chen ◽  
Jianxin Yi
Keyword(s):  
Author(s):  
G.L. Decker ◽  
M.C. Valdizan

A monoclonal antibody designated MAb 1223 has been used to show that primary mesenchyme cells of the sea urchin embryo express a 130-kDa cell surface protein that may be directly involved in Ca2+ uptake required for growth of skeletal spicules. Other studies from this laboratory have shown that the 1223 antigen, although in relatively low abundance, is also expressed on the cell surfaces of unfertilized eggs and on the majority of blastomeres formed prior to differentiation of the primary mesenchyme cells.We have studied the distribution of 1223 antigen in S. purpuratus eggs and embryos and in isolated egg cell surface complexes that contain the cortical secretory vesicles. Specimens were fixed in 1.0% paraformaldehyde and 1.0% glutaraldehyde and embedded in Lowicryl K4M as previously reported. Colloidal gold (8nm diameter) was prepared by the method of Mulpfordt.


Author(s):  
Barry Bonnell ◽  
Carolyn Larabell ◽  
Douglas Chandler

Eggs of many species including those of echinoderms, amphibians and mammals exhibit an extensive extracellular matrix (ECM) that is important both in the reception of sperm and in providing a block to polyspermy after fertilization.In sea urchin eggs there are two distinctive coats, the vitelline layer which contains glycoprotein sperm receptors and the jelly layer that contains fucose sulfate glycoconjugates which trigger the acrosomal reaction and small peptides which act as chemoattractants for sperm. The vitelline layer (VL), as visualized by quick-freezing, deep-etching, and rotary-shadowing (QFDE-RS), is a fishnet-like structure, anchored to the plasma membrane by short posts. Orbiting above the VL are horizontal filaments which are thought to anchor the thicker jelly layer to the egg. Upon fertilization, the VL elevates and is transformed by cortical granule secretions into the fertilization envelope (FE). The rounded casts of microvilli in the VL are transformed into angular peaks and the envelope becomes coated inside and out with sheets of paracrystalline protein having a quasi-two dimensional crystalline structure.


Author(s):  
H. Mohri

In 1959, Afzelius observed the presence of two rows of arms projecting from each outer doublet microtubule of the so-called 9 + 2 pattern of cilia and flagella, and suggested a possibility that the outer doublet microtubules slide with respect to each other with the aid of these arms during ciliary and flagellar movement. The identification of the arms as an ATPase, dynein, by Gibbons (1963)strengthened this hypothesis, since the ATPase-bearing heads of myosin molecules projecting from the thick filaments pull the thin filaments by cross-bridge formation during muscle contraction. The first experimental evidence for the sliding mechanism in cilia and flagella was obtained by examining the tip patterns of molluscan gill cilia by Satir (1965) who observed constant length of the microtubules during ciliary bending. Further evidence for the sliding-tubule mechanism was given by Summers and Gibbons (1971), using trypsin-treated axonemal fragments of sea urchin spermatozoa. Upon the addition of ATP, the outer doublets telescoped out from these fragments and the total length reached up to seven or more times that of the original fragment. Thus, the arms on a certain doublet microtubule can walk along the adjacent doublet when the doublet microtubules are disconnected by digestion of the interdoublet links which connect them with each other, or the radial spokes which connect them with the central pair-central sheath complex as illustrated in Fig. 1. On the basis of these pioneer works, the sliding-tubule mechanism has been established as one of the basic mechanisms for ciliary and flagellar movement.


Author(s):  
E.J. Battles ◽  
D. DeRosier ◽  
J.C. Saunders ◽  
L.G. Tilney

Extending from the apical surface of each hair cell of the chick cochlea are from 75 to 200 microvilli or stereocllia and one true cllium, the kinocilium. The stereocllia are arranged in rows of progressively increasing length (Fig. 1). Within each tapering sterocilium is a bundle of actin filaments with over 900 filaments near the tip yet only approximately 25 at the base where filaments are enmeshed in a dense material (Fig. 1); from here some of the filaments enter the apical surface of the cell (cuticular plate) as a rootlet. Examination of longitudinal sections of the stereocilia (Fig. 2) show that the filaments are aligned parallel to each other and show considerable order. Examination of an optical diffraction pattern of this bundle (Fig. 4) reveal that the actin filaments are packed such that the crossover points of adjacent actin filaments are inregister. A prominent reflection at 125Å−1 demonstrates that the filaments are cjossbridged by a macromolecular bridge situated at an average of 125Å−1 intervals (Fig. 4) in transverse sections the filaments appear hexagonally packed although there are regions where the filaments are less ordered (Fig. 3). In images processed in the computer to remove, noise and enhance detail periodic nature of the bridge can be clearly seen (see arrows Fig. 5). This image resembles that of an actin paracrystal formed from sea urchin extract composed of bundles of actin filaments crossbridged by a second protein. Thus the actin filaments in the bird stereocilia by being cross-bridged and packed with a high degree of order and produces a structure with considerable structural rigidity. Embryos were studied at various stages in development in an attempt to determine how the stereocilia form and how does the actin packing develops. These stages will be discussed.


2013 ◽  
Vol 485 ◽  
pp. 47-55 ◽  
Author(s):  
S Pinna ◽  
N Sechi ◽  
G Ceccherelli
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document