pH-responsive nanoparticles and automated detection apparatus for dual detection of pathogenic bacteria

2021 ◽  
pp. 131117
Author(s):  
Chunlei Yan ◽  
Yang Sun ◽  
Mingru Yao ◽  
Xiaoyu Jin ◽  
Qingli Yang ◽  
...  
Antibiotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 49
Author(s):  
Hanif Haidari ◽  
Zlatko Kopecki ◽  
Adam T. Sutton ◽  
Sanjay Garg ◽  
Allison J. Cowin ◽  
...  

Persistent wound infections have been a therapeutic challenge for a long time. Current treatment approaches are mostly based on the delivery of antibiotics, but these are not effective for all infections. Here, we report the development of a sensitive pH-responsive hydrogel that can provide controlled, pH-triggered release of silver nanoparticles (AgNPs). This delivery system was designed to sense the environmental pH and trigger the release of AgNPs when the pH changes from acidic to alkaline, as occurs due to the presence of pathogenic bacteria in the wound. Our results show that the prepared hydrogel restricts the release of AgNPs at acidic pH (pH = 4) but substantially amplifies it at alkaline pH (pH = 7.4 and pH = 10). This indicates the potential use of the hydrogel for the on-demand release of Ag+ depending on the environmental pH. In vitro antibacterial studies demonstrated effective elimination of both Gram-negative and positive bacteria. Additionally, the effective antibacterial dose of Ag+ showed no toxicity towards mammalian skin cells. Collectively, this pH-responsive hydrogel presents potential as a promising new material for the treatment of infected wounds.


Author(s):  
Kasula Nagaraja ◽  
Kummari S.V. Krishna Rao ◽  
Sunmi Zo ◽  
Sung Soo Han ◽  
Madhusudana Rao Kummara

Novel pH responsive semi-interpenetrating polymer hydrogels based on tamarind gum-co-poly(acrylamidoglycolic acid) (TMGA) polymers have been synthesized using simple free radical polymerization in the presence of bis[2-(methacryloyloxy)ethyl] phosphate as a crosslinker and potassium persulfate as a initiator. In addition, these hydrogels have been used as templates for green synthesis of silver nanoparticles (13.4±3.6 nm in diameter, TMGA-Ag) by using leaf extract of Teminalia bellirica as reducing agent. Swelling kinetics and equilibrium swelling behavior of the TMGA hydrogels have been investigated in various pH environment the maxium % equilibrium swelling behavior observed i.e., 2882±1.2. The synthesized hydrogels and silver nanocomposites have been characterized by the UV, FTIR, XRD, SEM and TEM. TMGA and TMGA-Ag hydrogels have been investigated to study the characteristics of drug delivery and antimicrobial study. Doxorubicin hydrochloride, a chemotherapeutic agent successfully encapsulated with maximum encapulstaion efficiency i.e., 69.20±1.2 and performed in vitro release studies in pH physiological and gastric environment at 37 ℃. The drug release behavior is examined with kinetic models such as zero order, first order, Higuchi, Hixson Crowell, Korsmeyer-Peppas. These release data was the best fitted with the Korsemeyer-Peppas transport mechanism with n=0.91. Treatment effect on HCT116 Cell, human colon cancer cells were assessed with cell viability and cell cycle analysis. Antimicrobial activity of TMGA-Ag hydrogels is studied against to Staphylococcus aureus and Klebsiella pneumonia. Finally, the results demonstrate that TMGA and TMGA-Ag are promising candidates for anti-cancer drug delivery and inactivation of pathogenic bacteria, respectively.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 237
Author(s):  
Kasula Nagaraja ◽  
Kummari S. V. Krishna Rao ◽  
Sunmi Zo ◽  
Sung Soo Han ◽  
Kummara Madhususdana Rao

In this paper, novel pH-responsive, semi-interpenetrating polymer hydrogels based on tamarind gum-co-poly(acrylamidoglycolic acid) (TMGA) polymers were synthesized using simple free radical polymerization in the presence of bis[2-(methacryloyloxy)ethyl] phosphate as a crosslinker and potassium persulfate as a initiator. In addition, these hydrogels were used as templates for the green synthesis of silver nanoparticles (13.4 ± 3.6 nm in diameter, TMGA-Ag) by using leaf extract of Teminalia bellirica as a reducing agent. Swelling kinetics and the equilibrium swelling behavior of the TMGA hydrogels were investigated in various pH environments, and the maximum % of equilibrium swelling behavior observed was 2882 ± 1.2. The synthesized hydrogels and silver nanocomposites were characterized via UV, FTIR, XRD, SEM and TEM. TMGA and TMGA-Ag hydrogels were investigated to study the characteristics of drug delivery and antimicrobial study. Doxorubicin hydrochloride, a chemotherapeutic agent successfully encapsulated with maximum encapsulation efficiency, i.e., 69.20 ± 1.2, was used in in vitro release studies in pH physiological and gastric environments at 37 °C. The drug release behavior was examined with kinetic models such as zero-order, first-order, Higuchi, Hixson Crowell and Korsmeyer–Peppas. These release data were best fitted with the Korsemeyer–Peppas transport mechanism, with n = 0.91. The effects of treatment on HCT116 human colon cancer cells were assessed via cell viability and cell cycle analysis. The antimicrobial activity of TMGA-Ag hydrogels was studied against Staphylococcus aureus and Klebsiella pneumonia. Finally, the results demonstrate that TMGA and TMGA-Ag are promising candidates for anti-cancer drug delivery and the inactivation of pathogenic bacteria, respectively.


2006 ◽  
Vol 37 (7) ◽  
pp. 48
Author(s):  
ERIK GOLDMAN
Keyword(s):  

2010 ◽  
Vol 80 (45) ◽  
pp. 279-292 ◽  
Author(s):  
Richard Hurrell

Febrile malaria and asymptomatic malaria parasitemia substantially decrease iron absorption in single-meal, stable isotope studies in women and children, but to date there is no evidence of decreased efficacy of iron-fortified foods in malaria-endemic regions. Without inadequate malarial surveillance or health care, giving iron supplements to children in areas of high transmission could increase morbidity and mortality. The most likely explanation is the appearance of non-transferrin-bound iron (NTBI) in the plasma. NTBI forms when the rate of iron influx into the plasma exceeds the rate of iron binding to transferrin. Two studies in women have reported substantially increased NTBI with the ingestion of iron supplements. Our studies confirm this, but found no significant increase in NTBI on consumption of iron-fortified food. It seems likely that the malarial parasite in hepatocytes can utilize NTBI, but it cannot do so in infected erythrocytes. NTBI however may increase the sequestration of parasite-infected erythrocytes in capillaries. Bacteremia is common in children with severe malaria and sequestration in villi capillaries could lead to a breaching of the intestinal barrier, allowing the passage of pathogenic bacteria into the systemic circulation. This is especially important as frequent high iron doses increase the number of pathogens in the intestine at the expense of the barrier bacteria.


2012 ◽  
Vol 50 (05) ◽  
Author(s):  
G Valcz ◽  
I Bándi ◽  
B Wichmann ◽  
A Patai ◽  
D Szabó ◽  
...  

Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
AL Magalhães ◽  
G Melo ◽  
N Gabriel ◽  
G Gabas ◽  
G Gonçalves ◽  
...  

2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Wanda Aulya ◽  
Fadhliani Fadhliani ◽  
Vivi Mardina

Water is the main source for life and also the most severe substance caused by pollution. The mandatory parameters for determining microbiological quality of drinking water are total non-fecal Coliform bacteria and Coliform fecal (Escherichia coli). Coliform bacteria are a group of microorganisms commonly used as indicators, where these bacteria can be a signal to determine whether a water source has been contaminated by bacteria or not, while fecal Coliform bacteria are indicator bacteria polluting pathogenic bacteria originating from human feces and warm-blooded animals (mammals) . The water inspection method in this study uses the MPN (Most Probable Number) method which consists of 3 tests, namely, the presumption test, the affirmation test, and the reinforcement test. The results showed that of 15 drinking water samples 8 samples were tested positive for Coliform bacteria with the highest total bacterial value of sample number 1, 15 (210/100 ml), while 7 other samples were negative. From 8 positive Coliform samples only 1 sample was stated to be negative fecal Coliform bacteria and 7 other samples were positive for Coliform fecal bacteria with the highest total bacterial value of sample number 1 (210/100 ml).


Sign in / Sign up

Export Citation Format

Share Document