Flower-like MoS2 hierarchical architectures assembled by 2D nanosheets sensitized with SnO2 quantum dots for high-performance NH3 sensing at room temperature

2021 ◽  
pp. 131191
Author(s):  
Jinzhou Bai ◽  
Yanbai Shen ◽  
Sikai Zhao ◽  
Yunshuang Chen ◽  
Guodong Li ◽  
...  
2017 ◽  
Vol 253 ◽  
pp. 1034-1042 ◽  
Author(s):  
Ziyu Qin ◽  
Chao Ouyang ◽  
Jian Zhang ◽  
Li Wan ◽  
Shimin Wang ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Jingyao Liu ◽  
Zhixiang Hu ◽  
Yuzhu Zhang ◽  
Hua-Yao Li ◽  
Naibo Gao ◽  
...  

AbstractThe Internet of things for environment monitoring requires high performance with low power-consumption gas sensors which could be easily integrated into large-scale sensor network. While semiconductor gas sensors have many advantages such as excellent sensitivity and low cost, their application is limited by their high operating temperature. Two-dimensional (2D) layered materials, typically molybdenum disulfide (MoS2) nanosheets, are emerging as promising gas-sensing materials candidates owing to their abundant edge sites and high in-plane carrier mobility. This work aims to overcome the sluggish and weak response as well as incomplete recovery of MoS2 gas sensors at room temperature by sensitizing MoS2 nanosheets with PbS quantum dots (QDs). The huge amount of surface dangling bonds of QDs enables them to be ideal receptors for gas molecules. The sensitized MoS2 gas sensor exhibited fast and recoverable response when operated at room temperature, and the limit of NO2 detection was estimated to be 94 ppb. The strategy of sensitizing 2D nanosheets with sensitive QD receptors may enhance receptor and transducer functions as well as the utility factor that determine the sensor performance, offering a powerful new degree of freedom to the surface and interface engineering of semiconductor gas sensors.


Author(s):  
Sotirios Christodoulou ◽  
Francesco Di Stasio ◽  
Santanu Pradhan ◽  
Inigo Ramiro ◽  
Yu Bi ◽  
...  

Author(s):  
Lishuang Wang ◽  
Ying Lv ◽  
Jie Lin ◽  
Jialong Zhao ◽  
Xingyuan Liu ◽  
...  

For quantum dots light-emitting diodes (QLEDs), typical colloidal quantum dots (QDs) are usually composed of a core/shell heterostructure which is covered with organic ligands as surface passivated materials to confine...


2020 ◽  
Vol 40 (8) ◽  
pp. 676-684
Author(s):  
Niping Dai ◽  
Junkun Tang ◽  
Manping Ma ◽  
Xiaotian Liu ◽  
Chuan Li ◽  
...  

AbstractStar-shaped arylacetylene resins, tris(3-ethynyl-phenylethynyl)methylsilane, tris(3-ethynyl-phenylethynyl) phenylsilane, and tris (3-ethynyl-phenylethynyl) silane (TEPHS), were synthesized through Grignard reaction between 1,3-diethynylbenzene and three types of trichlorinated silanes. The chemical structures and properties of the resins were characterized by means of nuclear magnetic resonance, fourier-transform infrared spectroscopy, Haake torque rheomoter, differential scanning calorimetry, dynamic mechanical analysis, mechanical test, and thermogravimetric analysis. The results show that the melt viscosity at 120 °C is lower than 150 mPa⋅s, and the processing windows are as wide as 60 °C for the resins. The resins cure at the temperature as low as 150 °C. The good processabilities make the resins to be suitable for resin transfer molding. The cured resins exhibit high flexural modulus and excellent heat-resistance. The flexural modulus of the cured TEPHS at room temperature arrives at as high as 10.9 GPa. Its temperature of 5% weight loss (Td5) is up to 697 °C in nitrogen. The resins show the potential for application in fiber-reinforced composites as high-performance resin in the field of aviation and aerospace.


Author(s):  
Jingxuan Zhao ◽  
Zhibo Zhao ◽  
Yang Sun ◽  
Xiangdong Ma ◽  
Meidan Ye ◽  
...  

Taking into account of time-confusing preparation processing and unsatisfied desalination capacity of carbon nanomaterials, exploring efficient electrode materials remains a great challenge for practical capacitive deionization (CDI) application. In this...


Sign in / Sign up

Export Citation Format

Share Document