Organic acids in root exudates and soil solution of Norway spruce and silver birch

2005 ◽  
Vol 37 (2) ◽  
pp. 259-269 ◽  
Author(s):  
Arne Sandnes ◽  
Toril D. Eldhuset ◽  
Gro Wollebæk
Author(s):  
Garrison Sposito

Biomoleculesare compounds synthesized to sustain the life cycles of organisms. In soil humus, they are usually products of litter degradation, root excretion, and microbial metabolism, ranging in molecular structure from simple organic acids to complex biopolymers. Organic acids are among the best-characterized biomolecules. Table 3.1 lists five aliphatic (meaning the C atoms are arranged in open-chain structures) organic acids associated commonly with the soil microbiome. These acids contain the unit R—COOH, where COOH is the carboxyl groupand R represents either H or an organic moiety. The carboxyl group can lose its proton easily within the normal range of soil pH (see the third column of Table 3.1) and so is an example of a Brønsted acid. The released proton, in turn, can attack soil minerals to induce their decomposition (see Eq. 1.2), whereas the carboxylate anion (COO-) can form soluble complexes with metal cations, such as Al3+, that are released by mineral weathering [for example, in Eq. 1.7, rewrite oxalate, C2O42-, as (COO-) 2]. The total concentration of organic acids in the soil solution ranges up to 5 mM. These acids tend to have very short lifetimes because of biocycling, but they abide as a component of soil humus, especially its water-soluble fraction, because they are produced continually by microorganisms and plant roots. Formic acid (methanoic acid), the first entry in Table 3.1, is a monocarboxylic acid produced by bacteria and found in the root exudates of maize. Acetic acid (ethanoic acid) also is produced microbially—especially under anaerobic conditions—and is found in root exudates of grasses and herbs. Formic and acetic acid concentrations in the soil solution range from 2 to 5 mM. Oxalic acid (ethanedioic acid), which is ubiquitous in soils, and tartaric acid (D- 2,3-dihydroxybutanedioic acid) are dicarboxylic acids produced by fungi and excreted by plant roots; their soil solution concentrations range from 0.05 to 1 mM. The tricarboxylic citric acid (2-hydroxypropane- 1,2,3-tricarboxylic acid) is also produced by fungi and excreted by plant roots. Its soil solution concentration is less than 0.05 mM.


Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 943
Author(s):  
Katri Nissinen ◽  
Virpi Virjamo ◽  
Antti Kilpeläinen ◽  
Veli-Pekka Ikonen ◽  
Laura Pikkarainen ◽  
...  

We studied the growth responses of boreal Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L. Karst.) and silver birch (Betula pendula Roth) seedlings to simulated climate warming of an average of 1.3 °C over the growing season in a controlled field experiment in central Finland. We had six replicate plots for elevated and ambient temperature for each tree species. The warming treatment lasted for the conifers for three growing seasons and for the birch two growing seasons. We measured the height and diameter growth of all the seedlings weekly during the growing season. The shoot and root biomass and their ratios were measured annually in one-third of seedlings harvested from each plot in autumn. After two growing seasons, the height, diameter and shoot biomass were 45%, 19% and 41% larger in silver birch seedlings under the warming treatment, but the root biomass was clearly less affected. After three growing seasons, the height, diameter, shoot and root biomass were under a warming treatment 39, 47, 189 and 113% greater in Scots pine, but the root:shoot ratio 29% lower, respectively. The corresponding responses of Norway spruce to warming were clearly smaller (e.g., shoot biomass 46% higher under a warming treatment). As a comparison, the relative response of height growth in silver birch was after two growing seasons equal to that measured in Scots pine after three growing seasons. Based on our findings, especially silver birch seedlings, but also Scots pine seedlings benefitted from warming, which should be taken into account in forest regeneration in the future.


2012 ◽  
Vol 32 (6) ◽  
pp. 724-736 ◽  
Author(s):  
J. Pumpanen ◽  
J. Heinonsalo ◽  
T. Rasilo ◽  
J. Villemot ◽  
H. Ilvesniemi

Author(s):  
Hana Kaňová ◽  
Joffrey Carre ◽  
Valerie Vranová ◽  
Klement Rejšek ◽  
Pavel Formánek

This study was conducted to determine the composition of sugars and organic acids in root exudates of Miscanthus × Giganteus and to find out if microorganisms of the rhizospheric soil are limited by mi­ne­ral nutrients. The following sugars and organic acids were determined in root exudates of this plant: glucose, saccharose, and acids such as succinic, propionic, citric, tartaric, malic, oxalic, ascorbic, acetic and fumaric. Respiration of soil from rhizosphere of Miscanthus × Giganteus was found to be limited by N, K and Ca. Respiration rate after application of mineral compounds increased in following orther: nitrate > calcium > potassium > ammonium, giving approx. 165, 99, 52 and 31 % increase compared to control. Further research is necessary to determine the role of plant nutrients from the point of their limitations for rhizosphere microorganisms, to broader very rare knowledges in this topic, especially for polluted soils to stimulate efficiency of phytoremediations.


2021 ◽  
pp. 112218
Author(s):  
Steigvilė Byčenkienė ◽  
Daria Pashneva ◽  
Ieva Uogintė ◽  
Julija Pauraitė ◽  
Agnė Minderytė ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document