Implementation and stability analysis of discrete-time filters for approximating frequency-dependent impedance functions in the time domain

2017 ◽  
Vol 94 ◽  
pp. 223-233 ◽  
Author(s):  
Richard Gash ◽  
Elnaz Esmaeilzadeh Seylabi ◽  
Ertugrul Taciroglu
Author(s):  
Mansour Tabatabaie ◽  
Thomas Ballard

Dynamic soil-structure interaction (SSI) analysis of nuclear power plants is often performed in frequency domain using programs such as SASSI [1]. This enables the analyst to properly a) address the effects of wave radiation in an unbounded soil media, b) incorporate strain-compatible soil shear modulus and damping properties and c) specify input motion in the free field using the de-convolution method and/or spatially variable ground motions. For structures that exhibit nonlinearities such as potential base sliding and/or uplift, the frequency-domain procedure is not applicable as it is limited to linear systems. For such problems, it is necessary to solve the problem in the time domain using the direct integration method in programs such as ADINA [2]. The authors recently introduced a sub-structuring technique called distributed parameter foundation impedance (DPFI) model that allows the structure to be partitioned from the total SSI system and analyzed in the time domain while the foundation soil is modeled using the frequency-domain procedure [3]. This procedure has been validated for linear systems. In this paper we have expanded the DPFI model to incorporate nonlinearities at the soil/structure interface by introducing nonlinear shear and normal springs arranged in series between the DPFI and structure model. This combination of the linear far-field impedance (DPFI) plus nonlinear near-field soil springs allows the foundation sliding and/or uplift behavior be analyzed in time domain while maintaining the frequency-dependent stiffness and radiation damping nature of the far-field foundation impedance. To check the accuracy of this procedure, a typical NPP foundation mat supported at the surface of a layered soil system and subjected to harmonic forced vibration was first analyzed in the frequency domain using SASSI to calculate the target linear response and derive a linear, far-field DPFI model. The target linear solution was then used to validate two linear time-domain ADINA models: Model 1 consisting of the mat foundation+DPFI derived from the linear SASSI model and Model 2 consisting of the total SSI system (mat foundation plus a soil block). After linear alignment, the nonlinear springs were added to both ADINA models and re-analyzed in time domain. Model 2 provided the target nonlinear solution while Model 1 provided the results using the DPFI+nonlinear springs. By increasing the amplitude of the vibration load, different levels of foundation sliding were simulated. Good agreement between the results of two models in terms of the displacement response of the mat and cyclic force-displacement behavior of the springs validates the accuracy of the procedure presented herein.


2012 ◽  
Vol 1 (2) ◽  
pp. 26
Author(s):  
Y. Liu ◽  
B. Ravelo ◽  
J. Ben Hadj Slama

This paper is devoted on the application of the computational method for calculating the transient electromagnetic (EM) near-field (NF) radiated by electronic structures from the frequency-dependent data for the arbitrary wave form perturbations i(t). The method proposed is based on the fast Fourier transform (FFT). The different steps illustrating the principle of the method is described. It is composed of three successive steps: the synchronization of the input excitation spectrum I(f) and the given frequency data H0(f), the convolution of the two inputs data and then, the determination of the time-domain emissions H(t). The feasibility of the method is verified with standard EM 3D simulations. In addition to this method, an extraction technique of the time-dependent z-transversal EM NF component Xz(t) from the frequency-dependent x- and y- longitudinal components Hx(f) and Hy(f) is also presented. This technique is based on the conjugation of the plane wave spectrum (PWS) transform and FFT. The feasibility of the method is verified with a set of dipole radiations. The method introduced in this paper is particularly useful for the investigation of time-domain emissions for EMC applications by considering transient EM interferences (EMIs).


Mechanik ◽  
2017 ◽  
Vol 90 (11) ◽  
pp. 965-967
Author(s):  
Piotr Andrzej Bąk ◽  
Krzysztof Jemielniak

Self-excited vibrations significantly reduce the milling productivity, deteriorate the quality of machined surface and tool life. One of the ways to avoid these vibrations is to modify the cutting parameters based on the stability analysis results. A method of numerical simulation of self-excited vibrations in the time domain can be used for this purpose. A comparison of numerical simulation results with those from experiments conducted using a milling machine is presented. The results confirm the correctness of applied modeling.


Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 440 ◽  
Author(s):  
Guanghui Wang ◽  
Qun Liu ◽  
Chuanzhen Wang ◽  
Lulu Dong ◽  
Dan Dai ◽  
...  

Hydrocyclones are extensively known as important separation devices which are used in many industrial fields. However, the general method to estimate device performance is time-consuming and has a high cost. The aim of this paper was to investigate the blockage diagnosis for a lab-scale hydrocyclone using a vibration-based technique based on wavelet denoising and the discrete-time Fourier transform method. The results indicate that the farther away the installation location from feed inlet the more regular the frequency is, which reveals that the installation plane near to the spigot generated the regular frequency distribution. Furthermore, the acceleration amplitude under blockage degrees 0%, 50% and 100% fluctuates as a sine shape with increasing time, meanwhile the vibration frequency of the hydrocyclone rises with increasing throughput. Moreover, the distribution of four dimensional and five non-dimensional parameters for the time domain shows that the standard deviation, compared to the others, reduced gradually with increases in blockage degree. Thus, the standard deviation was used to evaluate the online diagnosis of the blockage. The frequency domain distribution under different throughput reveals that the characteristic peaks consisting of the faulty frequency and multiple frequency were produced by the faulty blockage and the feed pump, respectively. Hence, the faulty peak of 16–17 Hz was adopted to judge the real-time blockage of the hydrocyclone, i.e., the presence of the characteristic peak marks the blockage, and its value is proportional to the blockage degree. The application of the online monitoring system demonstrates that the combination of the time domain and the frequency domain could admirably detect the running state and rapidly recognize blockage faults.


Author(s):  
Fushun Liu ◽  
Lei Jin ◽  
Jiefeng Chen ◽  
Wei Li

Numerical time- or frequency-domain techniques can be used to analyze motion responses of a floating structure in waves. Time-domain simulations of a linear transient or nonlinear system usually involve a convolution terms and are computationally demanding, and frequency-domain models are usually limited to steady-state responses. Recent research efforts have focused on improving model efficiency by approximating and replacing the convolution term in the time domain simulation. Contrary to existed techniques, this paper will utilize and extend a more novel method to the frequency response estimation of floating structures. This approach represents the convolution terms, which are associated with fluid memory effects, with a series of poles and corresponding residues in Laplace domain, based on the estimated frequency-dependent added mass and damping of the structure. The advantage of this approach is that the frequency-dependent motion equations in the time domain can then be transformed into Laplace domain without requiring Laplace-domain expressions of the added mass and damping. Two examples are employed to investigate the approach: The first is an analytical added mass and damping, which satisfies all the properties of convolution terms in time and frequency domains simultaneously. This demonstrates the accuracy of the new form of the retardation functions; secondly, a numerical six degrees of freedom model is employed to study its application to estimate the response of a floating structure. The key conclusions are: (1) the proposed pole-residue form can be used to consider the fluid memory effects; and (2) responses are in good agreement with traditional frequency-domain techniques.


Author(s):  
Ljiljana Milic

This chapter is a concise review of time-domain and transform-domain representations of single-rate discrete-time signals and systems. We consider first the time-domain representation of discrete-time signals and systems. The representation in transform domain comprises the discrete-time Fourier transform (DTFT), the discrete Fourier transform (DFT), and the z-transform. The basic realization structures for FIR and IIR systems are briefly described. Finally, the relations between continuous and discrete signals are given.


2021 ◽  
pp. 106-155
Author(s):  
Victor Lazzarini

This chapter is dedicated to exploring a form of the Fourier transform that can be applied to digital waveforms, the discrete Fourier transform (DFT). The theory is introduced and discussed as a modification to the continuous-time transform, alongside the concept of windowing in the time domain. The fast Fourier transform is explored as an efficient algorithm for the computation of the DFT. The operation of discrete-time convolution is presented as a straight application of the DFT in musical signal processing. The chapter closes with a detailed look at time-varying convolution, which extends the principles developed earlier. The conclusion expands the definition of spectrum once more.


Sign in / Sign up

Export Citation Format

Share Document