High-state spin in Ru4+: play the role in the interface coupling of the La0.7Sr0.3MnO3/SrRuO3 heterostructure

2021 ◽  
pp. 107985
Author(s):  
Guoqing Zhao ◽  
Xingkun Ning

1997 ◽  
Vol 7 (11) ◽  
pp. 1299-1304 ◽  
Author(s):  
P. Weinberger ◽  
C. Sommers ◽  
U. Pustogowa ◽  
L. Szunyogh ◽  
B. Újfalussy




1997 ◽  
Vol 481 (1) ◽  
pp. 433-446 ◽  
Author(s):  
D. W. Hoard ◽  
Paula Szkody
Keyword(s):  


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Changrim Ahn ◽  
Matthias Staudacher

Abstract We refine the notion of eclectic spin chains introduced in [1] by including a maximal number of deformation parameters. These models are integrable, nearest-neighbor n-state spin chains with exceedingly simple non-hermitian Hamiltonians. They turn out to be non-diagonalizable in the multiparticle sector (n > 2), where their “spectrum” consists of an intricate collection of Jordan blocks of arbitrary size and multiplicity. We show how and why the quantum inverse scattering method, sought to be universally applicable to integrable nearest-neighbor spin chains, essentially fails to reproduce the details of this spectrum. We then provide, for n=3, detailed evidence by a variety of analytical and numerical techniques that the spectrum is not “random”, but instead shows surprisingly subtle and regular patterns that moreover exhibit universality for generic deformation parameters. We also introduce a new model, the hypereclectic spin chain, where all parameters are zero except for one. Despite the extreme simplicity of its Hamiltonian, it still seems to reproduce the above “generic” spectra as a subset of an even more intricate overall spectrum. Our models are inspired by parts of the one-loop dilatation operator of a strongly twisted, double-scaled deformation of $$ \mathcal{N} $$ N = 4 Super Yang-Mills Theory.



2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Tomáš Neuman ◽  
Matt Eichenfield ◽  
Matthew E. Trusheim ◽  
Lisa Hackett ◽  
Prineha Narang ◽  
...  

AbstractWe introduce a method for high-fidelity quantum state transduction between a superconducting microwave qubit and the ground state spin system of a solid-state artificial atom, mediated via an acoustic bus connected by piezoelectric transducers. Applied to present-day experimental parameters for superconducting circuit qubits and diamond silicon-vacancy centers in an optimized phononic cavity, we estimate quantum state transduction with fidelity exceeding 99% at a MHz-scale bandwidth. By combining the complementary strengths of superconducting circuit quantum computing and artificial atoms, the hybrid architecture provides high-fidelity qubit gates with long-lived quantum memory, high-fidelity measurement, large qubit number, reconfigurable qubit connectivity, and high-fidelity state and gate teleportation through optical quantum networks.



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kuppusamy Senthil Kumar ◽  
Diana Serrano ◽  
Aline M. Nonat ◽  
Benoît Heinrich ◽  
Lydia Karmazin ◽  
...  

AbstractThe success of the emerging field of solid-state optical quantum information processing (QIP) critically depends on the access to resonant optical materials. Rare-earth ion (REI)-based molecular systems, whose quantum properties could be tuned taking advantage of molecular engineering strategies, are one of the systems actively pursued for the implementation of QIP schemes. Herein, we demonstrate the efficient polarization of ground-state nuclear spins—a fundamental requirement for all-optical spin initialization and addressing—in a binuclear Eu(III) complex, featuring inhomogeneously broadened 5D0 → 7F0 optical transition. At 1.4 K, long-lived spectral holes have been burnt in the transition: homogeneous linewidth (Γh) = 22 ± 1 MHz, which translates as optical coherence lifetime (T2opt) = 14.5 ± 0.7 ns, and ground-state spin population lifetime (T1spin) = 1.6 ± 0.4 s have been obtained. The results presented in this study could be a progressive step towards the realization of molecule-based coherent light-spin QIP interfaces.



Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 307
Author(s):  
Rebecca L. Dally ◽  
Daniel Phelan ◽  
Nicholas Bishop ◽  
Nirmal J. Ghimire ◽  
Jeffrey W. Lynn

Anisotropy and competing exchange interactions have emerged as two central ingredients needed for centrosymmetric materials to exhibit topological spin textures. Fe3Sn2 is thought to have these ingredients as well, as it has recently been discovered to host room temperature skyrmionic bubbles with an accompanying topological Hall effect. We present small-angle inelastic neutron scattering measurements that unambiguously show that Fe3Sn2 is an isotropic ferromagnet below TC≈660 K to at least 480 K—the lower temperature threshold of our experimental configuration. Fe3Sn2 is known to have competing magnetic exchange interactions, correlated electron behavior, weak magnetocrystalline anisotropy, and lattice (spatial) anisotropy; all of these features are thought to play a role in stabilizing skyrmions in centrosymmetric systems. Our results reveal that at the elevated temperatures measured, there is an absence of significant magnetocrystalline anisotropy and that the system behaves as a nearly ideal isotropic exchange interaction ferromagnet, with a spin stiffness D(T=480 K)=168 meV Å2, which extrapolates to a ground state spin stiffness D(T=0 K)=231 meV Å2.



2021 ◽  
Vol 23 (5) ◽  
pp. 3407-3416
Author(s):  
Jin Yuan ◽  
Jian-Qing Dai ◽  
Cheng Ke ◽  
Zi-Cheng Wei

The interface coupling mechanism, charge doping effect, and effect of polarization reversal in the graphene/BiAlO3(0001) hybrid system are explored by first-principles DFT calculations.



2011 ◽  
Vol 143 (1) ◽  
pp. 23 ◽  
Author(s):  
Haritma Gaur ◽  
Alok C. Gupta ◽  
Paul J. Wiita


2021 ◽  
Vol 4 ◽  
Author(s):  
Vasileios Ioakeimidis ◽  
Nareg Khachatoorian ◽  
Corinna Haenschel ◽  
Thomas A. Papathomas ◽  
Attila Farkas ◽  
...  

Abstract The hollow-mask illusion is an optical illusion where a concave face is perceived as convex. It has been demonstrated that individuals with schizophrenia and anxiety are less susceptible to the illusion than controls. Previous research has shown that the P300 and P600 event-related potentials (ERPs) are affected in individuals with schizophrenia. Here, we examined whether individual differences in neuroticism and anxiety scores, traits that have been suggested to be risk factors for schizophrenia and anxiety disorders, affect ERPs of healthy participants while they view concave faces. Our results confirm that the participants were susceptible to the illusion, misperceiving concave faces as convex. We additionally demonstrate significant interactions of the concave condition with state anxiety in central and parietal electrodes for P300 and parietal areas for P600, but not with neuroticism and trait anxiety. The state anxiety interactions were driven by low-state anxiety participants showing lower amplitudes for concave faces compared to convex. The P300 and P600 amplitudes were smaller when a concave face activated a convex face memory representation, since the stimulus did not match the active representation. The opposite pattern was evident in high-state anxiety participants in regard to state anxiety interaction and the hollow-mask illusion, demonstrating larger P300 and P600 amplitudes to concave faces suggesting impaired late information processing in this group. This could be explained by impaired allocation of attentional resources in high-state anxiety leading to hyperarousal to concave faces that are unexpected mismatches to standard memory representations, as opposed to expected convex faces.



Sign in / Sign up

Export Citation Format

Share Document