scholarly journals Plant residue mulch increases measured and modelled soil moisture content in the effective root zone of maize in semi-arid Kenya

2021 ◽  
Vol 209 ◽  
pp. 104945
Author(s):  
J. Tuure ◽  
M. Räsänen ◽  
M. Hautala ◽  
P. Pellikka ◽  
P.S.A. Mäkelä ◽  
...  
2019 ◽  
Vol 8 (4) ◽  
pp. 12457-12460

The Water Scarcity is a prominent feature in Arid and Semi-Arid region. Soil moisture content is significant factor in deciding vegetation growth and also affects the performance of any water harvesting system in place. This paper evaluates the interrelationship of Soil properties with Soil Moisture content. The study covers about 13 soil Samples from Single Watershed. The soil properties covered in the study are Conductivity, pH, Bulk Density, Dry Density, Specific gravity, organic content, void ratio, and Moisture Content. Multiple linear regression analysis was done to determine significance of each soil properties for soil moisture content as individual and as whole. Modelling was done based on soil characteristics to predict Soil Moisture. Principal Component Analysis was performed to identify most significant soil properties responsible for variation of prediction of Soil Moisture content. The Correlation between location topography and Moisture Content was obtained through Cluster Analysis.


2018 ◽  
Vol 10 (10) ◽  
pp. 1667 ◽  
Author(s):  
Omer Shamir ◽  
Naftaly Goldshleger ◽  
Uri Basson ◽  
Moshe Reshef

Soil moisture content (SMC) down to the root zone is a major factor for the efficient cultivation of agricultural crops, especially in arid and semi-arid regions. Precise SMC can maximize crop yields (both quality and quantity), prevent crop damage, and decrease irrigation expenses and water waste, among other benefits. This study focuses on the subsurface spatial electromagnetic mapping of physical properties, mainly moisture content, using a ground-penetrating radar (GPR). In the laboratory, GPR measurements were carried out using an 800 MHz central-frequency antenna and conducted in soil boxes with loess soil type (calcic haploxeralf) from the northern Negev, hamra soil type (typic rhodoxeralf) from the Sharon coastal plain, and grumusol soil type (typic chromoxerets) from the Jezreel valley, Israel. These measurements enabled highly accurate, close-to-real-time evaluations of physical soil qualities (i.e., wave velocity and dielectric constant) connected to SMC. A mixture model based mainly on soil texture, porosity, and effective dielectric constant (permittivity) was developed to measure the subsurface spatial volumetric soil moisture content (VSMC) for a wide range of moisture contents. The analysis of the travel times for GPR reflection and diffraction waves enabled calculating electromagnetic velocities, effective dielectric constants, and spatial SMC under laboratory conditions, where the required penetration depth is low (root zone). The average VSMC was determined with an average accuracy of ±1.5% and was correlated to a standard oven-drying method, making this spatial method useful for agricultural practice and for the design of irrigation plans for different interfaces.


1966 ◽  
Vol 17 (3) ◽  
pp. 269 ◽  
Author(s):  
RA Fischer ◽  
GD Kohn

Trials were conducted in 1961 and 1962 at Wagga in southern New South Wales to investigate the yield physiology of the wheat crop. Various cultural treatments were applied to a single variety (Heron). The increases in evapotranspiration and associated reductions in total soil moisture content caused by early sowing, by heavier fertilizer applications, and to a lesser extent by a heavier rate of sowing were reflected in an increased plant moisture stress (reduced leaf relative turgidity) at a given time in the spring. At a given stage of development, however, relative turgidity was not much affected by time of sowing, and in fact post-flowering plant moisture stress increased with later sowing. There were only small treatment effects on the estimated depth and density of rooting. Relatively little water was extracted by crops from below 40 in.; dense crops reduced the soil moisture content throughout the root zone to less than the –15 bar value. Leaf relative turgidity at sunrise showed a consistent inverse relationship to soil moisture content in the root zone. Leaf turgidity (sunrise) was maintained at 100% until root zone moisture levels approached the –15 bar value.


2010 ◽  
Vol 2 ◽  
pp. 1970-1978 ◽  
Author(s):  
Yong Zhang ◽  
Junshan Liu ◽  
Xia Xu ◽  
Yuqiang Tian ◽  
Yue Li ◽  
...  

Author(s):  
Kevin Z. Mganga ◽  
Luwieke Bosma ◽  
Kevin O. Amollo ◽  
Theophilus Kioko ◽  
Nancy Kadenyi ◽  
...  

AbstractIn African drylands, perennial grasses preferred by grazing livestock are disappearing at an alarming rate. This has led to recurrent livestock feed shortages threatening pastoralist’s livelihoods. Combining native grass reseeding and rainwater harvesting offers a viable and innovative solution to reverse this trend. However, studies to determine how biomass yields are affected by soil moisture availability attributed to in situ rainwater harvesting in African drylands are limited. We investigated how biomass yields of three grasses native to Africa, i.e., Enteropogon macrostachyus (Bush rye grass), Cenchrus ciliaris (African foxtail grass), and Eragrostis superba (Maasai love grass), are affected by soil moisture content in a typical semi-arid landscape. Rainwater harvesting structures included trenches, micro-catchments and furrows. Additionally, rain runoff was diverted from an adjacent road used as a catchment area. Soil moisture was measured between November 2018 and August 2019 using PlantCare Mini-Logger sensors installed at 40 and 50 cm depths and 0, 1, 5 and 15 m away from the trench. Quadrat method was used to determine biomass yields in August 2019. Peaks in soil moisture were observed after rainfall events. Soil moisture content gradually decreased after the rainy season, but was higher closer to the trench. This is attributed to the prolonged rainwater retention in the trenches. Biomass yields were in the order Eragrostis superba > Cenchrus ciliaris > Enteropogon macrostachyus. Biomass production was higher near the trenches for all the studied species. Sensitivity to soil moisture demonstrated by the magnitude to yield reduction during the growing season was in the order Eragrostis superba > Cenchrus ciliaris > Enteropogon macrostachyus. These results suggest that Eragrostis superba is more sensitive to drought stress than Enteropogon macrostachyus that is adapted to a wide range of soil moisture conditions. We demonstrated that in situ rainwater harvesting structures enhanced soil moisture availability and displayed great potential for revegetating denuded natural rangelands in semi-arid African landscapes. Thus, combining rainwater harvesting and reseeding techniques can produce measurable improvements in pastoral livelihoods and should be incorporated in dryland development policies in the region. Ultimately, incorporating such innovative strategies can strengthen the effectiveness of ecological restoration in African drylands to meet the objectives of the UN Decade on Ecosystem Restoration and achieving the UN Sustainable Development Goals. Graphical abstract


2018 ◽  
Vol 75 ◽  
pp. 449-458 ◽  
Author(s):  
Jianjun Cao ◽  
Hong Tian ◽  
Jan F. Adamowski ◽  
Xiaofang Zhang ◽  
Zijian Cao

Sign in / Sign up

Export Citation Format

Share Document