scholarly journals Subsoiling and conversion to conservation tillage enriched nitrogen cycling bacterial communities in sandy soils under long-term maize monoculture

2022 ◽  
Vol 215 ◽  
pp. 105197
Author(s):  
Huaying Zhang ◽  
Yichao Shi ◽  
Yuxin Dong ◽  
David R. Lapen ◽  
Jinghui Liu ◽  
...  
2021 ◽  
Vol 309 ◽  
pp. 107285
Author(s):  
Mengyu Gao ◽  
Jinfeng Yang ◽  
Chunmei Liu ◽  
Bowen Gu ◽  
Meng Han ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. 501
Author(s):  
Zhimin Zhang ◽  
Qinghui Deng ◽  
Lingling Wan ◽  
Xiuyun Cao ◽  
Yiyong Zhou ◽  
...  

Aquaculture is among the most important and fastest growing agriculture sectors worldwide; however, it generates environmental impacts by introducing nutrient accumulations in ponds, which are possibly different and further result in complex biological processes in the sediments based on diverse farming practices. In this study, we investigated the effects of long-term farming practices of representative aquatic animals dominated by grass carp (GC, Ctenopharyngodon idella) or Chinese mitten crab (CMC, Eriocheir sinensis) on the bacterial community and enzyme activity of sediments from more than 15 years of aquaculture ponds, and the differences associated with sediment properties were explored in the two farming practices. Compared to CMC ponds, GC ponds had lower contents of TC, TN, and TP in sediments, and similar trends for sediment pH and moisture content. Sediment bacterial communities were significantly different between GC and CMC ponds, with higher bacterial richness and diversity in GC ponds. The bacterial communities among the pond sediments were closely associated with sediment pH, TC, and TN. Additionally, the results showed profoundly lower activities of β-1,4-glucosidase, leucine aminopeptidase, and phosphatase in the sediments of GC ponds than CMC ponds. Pearson’s correlation analysis further revealed strong positive correlations between the hydrolytic enzyme activities and nutrient concentrations among the aquaculture ponds, indicating microbial enzyme regulation response to sediment nutrient dynamics. Our study herein reveals that farming practices of fish and crab differently affect bacterial communities and enzymatic activities in pond sediments, suggesting nutrient-driven sediment biological processes in aquaculture ponds for different farming practices.


2021 ◽  
Vol 165 ◽  
pp. 104014
Author(s):  
Yongxin Lin ◽  
Guiping Ye ◽  
Jiafa Luo ◽  
Hong J. Di ◽  
Stuart Lindsey ◽  
...  

2009 ◽  
Vol 105 (1) ◽  
pp. 55-62 ◽  
Author(s):  
E. Madejón ◽  
J.M. Murillo ◽  
F. Moreno ◽  
M.V. López ◽  
J.L. Arrue ◽  
...  

Soil Research ◽  
2001 ◽  
Vol 39 (2) ◽  
pp. 239 ◽  
Author(s):  
Yuxia Li ◽  
J. N. Tullberg ◽  
D. M. Freebairn

Wheel traffic can lead to compaction and degradation of soil physical properties. This study, as part of a study of controlled traffic farming, assessed the impact of compaction from wheel traffic on soil that had not been trafficked for 5 years. A tractor of 40 kN rear axle weight was used to apply traffic at varying wheelslip on a clay soil with varying residue cover to simulate effects of traffic typical of grain production operations in the northern Australian grain belt. A rainfall simulator was used to determine infiltration characteristics. Wheel traffic significantly reduced time to ponding, steady infiltration rate, and total infiltration compared with non-wheeled soil, with or without residue cover. Non-wheeled soil had 4—5 times greater steady infiltration rate than wheeled soil, irrespective of residue cover. Wheelslip greater than 10% further reduced steady infiltration rate and total infiltration compared with that measured for self-propulsion wheeling (3% wheelslip) under residue-protected conditions. Where there was no compaction from wheel traffic, residue cover had a greater effect on infiltration capacity, with steady infiltration rate increasing proportionally with residue cover (R 2 = 0.98). Residue cover, however, had much less effect on inf iltration when wheeling was imposed. These results demonstrated that the infiltration rate for the non-wheeled soil under a controlled traffic zero-till system was similar to that of virgin soil. However, when the soil was wheeled by a medium tractor wheel, infiltration rate was reduced to that of long-term cropped soil. These results suggest that wheel traffic, rather than tillage and cropping, might be the major factor governing infiltration. The exclusion of wheel traffic under a controlled traffic farming system, combined with conservation tillage, provides a way to enhance the sustainability of cropping this soil for improved infiltration, increased plant-available water, and reduced runoff-driven soil erosion.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1552 ◽  
Author(s):  
Igor Dekemati ◽  
Barbara Simon ◽  
Igor Bogunovic ◽  
Ivica Kisic ◽  
Katalin Kassai ◽  
...  

In addition to the dry (D) and rainy (R) seasons, a combination of the two i.e., rainy-dry (RD) and dry-rainy (DR), can also be observed in one year. The effects of the dry (D) and rainy (R) on soil are known, hence we hypothesized that the effects of the rainy-dry (RD) and dry-rainy (DR) periods on soil may differ from the former assessments. The aim of the study is to investigate the effect of six tillage treatments (ploughing—P, disk tillage—DT, loosening—L, tine tillage (a deeper—T and a shallower—ST) and no-till—NT) on earthworm abundance and crumb ratio during a long-term research (16 years) on Chernozems. The results related to the four year-groups (D, R, RD, and DR) with different residue cover. Seven degrees of cover ratio (between 12.5% and 62.5%) were selected on stubbles. Higher cover ratio (≥52.5%) improved water conservation, increased earthworm abundance (31 and 41 ind m–2) and crumb (78 and 82%) ratio (p < 0.01). R year came first in the rank of water content and earthworm abundance and DR proved to be more favorable for crumb formation. Considering the rank of soil tillage treatments, ST takes first place in evaluation of soil water content (SWC) and crumb ratio, and NT for earthworm abundance.


2018 ◽  
Vol 95 (1) ◽  
Author(s):  
Michael McTee ◽  
Lorinda Bullington ◽  
Matthias C Rillig ◽  
Philip W Ramsey

ABSTRACTMany experiments that measure the response of microbial communities to heavy metals increase metal concentrations abruptly in the soil. However, it is unclear whether abrupt additions mimic the gradual and often long-term accumulation of these metals in the environment where microbial populations may adapt. In a greenhouse experiment that lasted 26 months, we tested whether bacterial communities and soil respiration differed between soils that received an abrupt or a gradual addition of copper or no copper at all. Bacterial richness and other diversity indices were consistently lower in the abrupt treatment compared to the ambient treatment that received no copper. The abrupt addition of copper yielded different initial bacterial communities than the gradual addition; however, these communities appeared to converge once copper concentrations were approximately equal. Soil respiration in the abrupt treatment was initially suppressed but recovered after four months. Afterwards, respiration in both the gradual and abrupt treatments wavered between being below or equal to the ambient treatment. Overall, our study indicates that gradual and abrupt additions of copper can yield similar bacterial communities and respiration, but these responses may drastically vary until copper concentrations are equal.


Sign in / Sign up

Export Citation Format

Share Document