scholarly journals Arsenic stress in plants: A metabolomic perspective

Plant Stress ◽  
2022 ◽  
pp. 100055
Author(s):  
J.I. Martínez-Castillo ◽  
A. Saldaña-Robles ◽  
C. Ozuna
Keyword(s):  
2011 ◽  
Vol 34 (1) ◽  
pp. 167-174 ◽  
Author(s):  
Ki-Won Lee ◽  
Joon-Yung Cha ◽  
Kyung-Hee Kim ◽  
Yong-Goo Kim ◽  
Byung-Hyun Lee ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
pp. 45
Author(s):  
María del Carmen Molina ◽  
James F. White ◽  
Sara García-Salgado ◽  
M. Ángeles Quijano ◽  
Natalia González-Benítez

So far, the relative importance of the plant and its microbiome in the development of early stages of plant seedling growth under arsenic stress has not been studied. To test the role of endophytic bacteria in increasing plant success under arsenic stress, gnotobiotic seeds of J. montana were inoculated with two endophytic bacteria: Pantoea conspicua MC-K1 (PGPB and As resistant bacteria) and Arthrobacter sp. MC-D3A (non-helper and non-As resistant bacteria) and an endobacteria mixture. In holobiotic seedlings (with seed-vectored microbes intact), neither the capacity of germination nor development of roots and lateral hairs was affected at 125 μM As(V). However, in gnotobiotic seedlings, the plants are negatively impacted by absence of a microbiome and presence of arsenic, resulting in reduced growth of roots and root hairs. The inoculation of a single PGPB (P. conspicua-MCK1) shows a tendency to the recovery of the plant, both in arsenic enriched and arsenic-free media, while the inoculation with Arthrobacter sp. does not help in the recovery of the plants. Inoculation with a bacterial mixture allows recovery of plants in arsenic free media; however, plants did not recover under arsenic stress, probably because of a bacterial interaction in the mixture.


2021 ◽  
Vol 34 (1) ◽  
pp. 69-79
Author(s):  
Deepali Nagre ◽  
Roseline Xalxo ◽  
Vibhuti Chandrakar ◽  
S. Keshavkant

The ability of melatonin to regulate number of physiological and biochemical processes under different environmental stresses has been widely studied in plants. So, this investigation was done to study the protective roles of melatonin on Cicer arietinum L. grown under arsenic stress. Subjecting Cicer arietinum L. seeds to arsenic stress caused significant decreases in germination percentage, radicle growth, biomass accumulation, protein content and activities of antioxidant enzymes. On the other hand, melatonin treatment significantly increased growth parameters and protein quantity via improving antioxidant enzyme systems as compared with their corresponding untreated controls.


2015 ◽  
Vol 8 (2) ◽  
Author(s):  
Arti Rai ◽  
Archana Bhardwaj ◽  
Prashant Misra ◽  
Sumit K. Bag ◽  
Bijan Adhikari ◽  
...  

Chemosphere ◽  
2009 ◽  
Vol 74 (9) ◽  
pp. 1201-1208 ◽  
Author(s):  
Meetu Gupta ◽  
Pallavi Sharma ◽  
Neera Bhalla Sarin ◽  
Alok Krishna Sinha

2021 ◽  
Author(s):  
Stefanie Andersson ◽  
Antonia Romero ◽  
Joana Isabel Rodrigues ◽  
Sansan Hua ◽  
Xinxin Hao ◽  
...  

The toxic metalloid arsenic causes widespread misfolding and aggregation of cellular proteins. How these protein aggregates are formed in vivo, the mechanisms by which they affect cells, and how cells prevent their accumulation is not fully understood. To find components involved in these processes, we performed a genome-wide imaging screen and identified yeast deletion mutants with either enhanced or reduced protein aggregation levels during arsenite exposure. We show that many of the identified factors are crucial to safeguard protein homeostasis (proteostasis) and to protect cells against arsenite toxicity. The hits were enriched for various functions including protein biosynthesis and transcription, and dedicated follow-up experiments highlight the importance of accurate transcriptional and translational control for mitigating protein aggregation and toxicity during arsenite stress. Some of the hits are associated with pathological conditions, suggesting that arsenite-induced protein aggregation may affect disease processes. The broad network of cellular systems that impinge on proteostasis during arsenic stress identified in this current study provides a valuable resource and a framework for further elucidation of the mechanistic details of metalloid toxicity and pathogenesis.


Author(s):  
Samya Mairaj ◽  
Richa Dave Nagar ◽  
Lakshmikant Bhardwaj ◽  
F. Rehman ◽  
Anirudh Punnakal ◽  
...  

Background: Irrigation with arsenic-contaminated groundwater is leading to high arsenic-laden rice seeds and lower yields. In the present study, the effect of exogenous treatment of eugenol (extracted from Ocimum sanctum L leaf) on hydroponically grown rice seedlings was examined by investigating the antioxidant system under arsenic stress. Methods: In the experiment 7 day old rice seedlings (IR-64) were exposed to 10,50,100 µM of arsenite separately and co-treatment with 10,50,100 µM eugenol in a hydroponic medium for 7 days. The activity of antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, glutathione peroxidase, catalase and lipid peroxidation (malondialdehyde) in root and shoot tissues were determined separately by standard protocol. Result: Under arsenic treatment oxidative stress was induced by overproduction of reactive oxygen species (ROS) and disruption of antioxidant defense system measured in terms of increased activity of antioxidant enzymes and lipid peroxidation (malondialdehyde) in root and shoot tissues separately. Eugenol-treated seedlings along with arsenic exposure substantially decreased the level of arsenic uptake in plants resulting in a substantial reduction in ROS overproduction and MDA content. SOD, CAT, GPX activities perform an influential role in arsenic stress acclimatization and eugenol treated seedlings with arsenic exposures indicated substantial changes in all variables evaluated as compared to arsenic treatment only. This study suggests that oxidative stress caused by arsenic was ameliorated by eugenol.


Sign in / Sign up

Export Citation Format

Share Document