Effect of a two-step pretreatment method on adhesion of CVD diamond coatings on cemented carbide substrates

2004 ◽  
Vol 187 (1) ◽  
pp. 33-36 ◽  
Author(s):  
Jinqi Miao ◽  
Jianhua Song ◽  
Yundong Xue ◽  
Yumei Tong ◽  
Weizhong Tang ◽  
...  
2006 ◽  
Vol 532-533 ◽  
pp. 480-483 ◽  
Author(s):  
Wen Zhuang Lu ◽  
Dun Wen Zuo ◽  
Min Wang ◽  
Feng Xu

Chemical vapor deposition (CVD) diamond coatings were deposited on cemented carbide cutting cools by an electron-assisted hot filament chemical vapor deposition (EACVD) equipment developed by the authors. The CVD diamond coatings were studied by Scanning Electron Microscope (SEM) and Raman Scattering Spectroscopy (Raman). The experimental results show that CH4 concentration in the source gas performs great influence on the micro-structure, surface roughness, composition, residual stress and adhesion of the CVD diamond coatings. The increase of CH4 concentration results the change of diamond crystal from {111} orientation to {100} orientation, the decrease of the surface roughness and the increase of sp2 carbon in the CVD diamond coatings. A residual compressive stress exists in the CVD diamond coatings. The residual stress decreases with increasing CH4 concentration. A higher or lower CH4 concentration tends to reduce adhesion stress of the continuous CVD diamond coatings.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3333
Author(s):  
Eduardo L. Silva ◽  
Sérgio Pratas ◽  
Miguel A. Neto ◽  
Cristina M. Fernandes ◽  
Daniel Figueiredo ◽  
...  

Cobalt-cemented carbide micro-end mills were coated with diamond grown by chemical vapor deposition (CVD), with the purpose of micro-machining cemented carbides. The diamond coatings were designed with a multilayer architecture, alternating between sub-microcrystalline and nanocrystalline diamond layers. The structure of the coatings was studied by transmission electron microscopy. High adhesion to the chemically pre-treated WC-7Co tool substrates was observed by Rockwell C indentation, with the diamond coatings withstanding a critical load of 1250 N. The coated tools were tested for micro-end-milling of WC-15Co under air-cooling conditions, being able to cut more than 6500 m over a period of 120 min, after which a flank wear of 47.8 μm was attained. The machining performance and wear behavior of the micro-cutters was studied by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Crystallographic analysis through cross-sectional selected area electron diffraction patterns, along with characterization in dark-field and HRTEM modes, provided a possible correlation between interfacial stress relaxation and wear properties of the coatings. Overall, this work demonstrates that high adhesion of diamond coatings can be achieved by proper combination of chemical attack and coating architecture. By preventing catastrophic delamination, multilayer CVD diamond coatings are central towards the enhancement of the wear properties and mechanical robustness of carbide tools used for micro-machining of ultra-hard materials.


2010 ◽  
Vol 205 (1) ◽  
pp. 158-167 ◽  
Author(s):  
Qiuping Wei ◽  
Z.M. Yu ◽  
Michael N.R. Ashfold ◽  
Z. Chen ◽  
L. Wang ◽  
...  

2019 ◽  
Vol 109 (11-12) ◽  
pp. 857-861
Author(s):  
E. Uhlmann ◽  
E. Bath ◽  
J. Gäbler ◽  
M. Höfer

Der Cobalt-(Co)-Anteil in Hartmetallen diffundiert während des Diamantbeschichtungsprozesses in die Diamantschicht und mindert deren Haftfähigkeit. Siliciumcarbid-(SiC)-Zwischenschichten können als Diffusionsbarriere für Cobalt dienen und die konventionelle Ätzvorbehandlung der Substrate ersetzen. Im Rahmen einer Forschungsarbeit werden Beschichtungsprozesse mit SiC-Zwischenschicht entwickelt, diese Schichtsysteme auf verschiedene Substrate aufgebracht und durch Zerspanungsuntersuchungen bewertet.   The cobalt (Co) content in cemented carbide tools diffuses into the diamond layer during the coating process and reduces its adhesive strength. Siliciumcarbid-(SiC)-interlayers can serve as a diffusion barrier for cobalt and replace the conventional etching pre-treatment of blanks. In a research project different coating processes with SiC-interlayer are developed, the coating systems are applied to different substrates and evaluated in cutting experiments.


Wear ◽  
2013 ◽  
Vol 303 (1-2) ◽  
pp. 225-234 ◽  
Author(s):  
E. Salgueiredo ◽  
C.S. Abreu ◽  
M. Amaral ◽  
F.J. Oliveira ◽  
J.R. Gomes ◽  
...  
Keyword(s):  

2008 ◽  
Vol 375-376 ◽  
pp. 92-96 ◽  
Author(s):  
Wen Zhuang Lu ◽  
Dun Wen Zuo ◽  
Min Wang ◽  
Feng Xu

Electroplated Cr, Ni and Cu were used as interlayer for chemical vapor deposition (CVD) diamond coating on WC–Co cemented carbide cutting tools. The electroplated interlayers were studied by Scanning Electron Microscope (SEM), Electron Probe Micro Analyzer (EPMA) and X-ray diffraction (XRD). The CVD diamond coatings were studied by SEM and Raman Scattering Spectroscopy (Raman). The experimental results show that there is diffusion bonded interface between electroplated layer and WC-Co substrate after H plasma treatment, the bond between electroplated layers and WC-Co substrate changes from mechanical bond to metallurgical bond and the adhesion becomes stronger. Electroplated Cr interlayer forms new phases of Cr3C2 and Cr7C3 under CVD conditions, while electroplated Ni and Cu interlayers do not form carbides under CVD conditions. Cr carbides have good chemical compatibility to diamond, and they are propitious to diamond nucleation and growth during the deposition period. The diamond crystal microstructure, diamond quality and adhesion on Cr interlayer are better than those on electroplated Ni and Cu interlayers.


2017 ◽  
Vol 73 ◽  
pp. 190-198 ◽  
Author(s):  
Shabani M. ◽  
Abreu C.S. ◽  
Gomes J.R. ◽  
Silva R.F. ◽  
Oliveira F.J.

Sign in / Sign up

Export Citation Format

Share Document