Effects of the plasma oxygen concentration on the formation of SiOxCy films by low temperature PECVD

2005 ◽  
Vol 194 (1) ◽  
pp. 42-47 ◽  
Author(s):  
C. Lasorsa ◽  
P.J. Morando ◽  
A. Rodrigo
1995 ◽  
Vol 378 ◽  
Author(s):  
Xiaojun Deng ◽  
Bhushan L. Sopori

AbstractThe diffusivity of deuterium (D) at 250°C was determined in silicon samples grown by different techniques. It is found that the diffusivity increases with the growth speed, increase in carbon content and a decrease in oxygen concentration of the substrate. These growth conditions correlate well with the concentration of vacancy-type defects in the as-grown state. Hence, we conclude that a vacancy mechanism is responsible for low-temperature hydrogen diffusion in silicon. The highest diffusivity for hydrogen, calculated from these data, was found to be 3 × 10−7 cm2/s.


2015 ◽  
Vol 138 (4) ◽  
Author(s):  
Sunyoup Lee ◽  
Seungmook Oh ◽  
Junghwan Kim ◽  
Duksang Kim

The present study investigated the effects of biodiesel blending under a wide range of intake oxygen concentration levels in a diesel engine. This study attempted to identify the lowest biodiesel blending rate that achieves acceptable levels of nitric oxides (NOx), soot, and coefficient of variation in the indicated mean effective pressure (COVIMEP). Biodiesel blending was to be minimized in order to reduce the fuel penalty associated with the biodiesels lower caloric value (LCV). Engine experiments were performed in a 1 l single-cylinder diesel engine at an engine speed of 1400 rev/min under a medium load condition. The blend rate and intake oxygen concentration were varied independently of each other at a constant intake pressure of 200 kPa. The biodiesel blend rate varied from 0% (B000) to 100% biodiesel (B100) at a 20% increment. The intake oxygen level was adjusted from 8% to 19% by volume (vol. %) in order to embrace both conventional and low-temperature combustion (LTC) operations. A fixed injection duration of 788 ms at a fuel rail pressure of 160 MPa exhibited a gross indicated mean effective pressure (IMEP) between 750 kPa and 910 kPa, depending on the intake oxygen concentration. The experimental results indicated that the intake oxygen level had to be below 10 vol. % to achieve the indicated specific NOx (ISNOx) below 0.2 g/kW h with the B000 fuel. However, a substantial soot increase was exhibited at such a low intake oxygen level. Biodiesel blending reduced NOx until the blending rate reached 60% with reduced in-cylinder temperature due to lower total energy release. As a result, 60% biodiesel-blended diesel (B060) achieved NOx, soot, and COVIMEP of 0.2 g/kW h, 0.37 filter smoke number (FSN), and 0.5, respectively, at an intake oxygen concentration of 14 vol. %. The corresponding indicated thermal efficiency was 43.2%.


1997 ◽  
Vol 505 ◽  
Author(s):  
Shane A. Catledge ◽  
Yogesh K. Vohra

ABSTRACTLow temperature diamond deposition on metal substrates is motivated by the need to reduce thermal stress so that the film adhesion is satisfactory. Although the use of oxygen-con- taining gas mixtures have been shown to extend the temperature range for which diamond can grow as well as to improve film quality, most studies have focused on the use of silicon as sub- strates and have neglected technologically important metallic systems. To this end, microwave plasma chemical vapor deposition (MPCVD) was used to grow diamond films on Ti-6A1-4V alloy at low temperature (615 to 780 C) using CH4/O2/H2 and CO/H2 gas mixtures. In-situ pyrometric interferometry (ISPI) shows that as the oxygen concentration increases, the onset time for dia- mond nucleation and subsequent film surface roughness increases while the average growth rate decreases. Micro-Raman spectroscopy shows improved film quality and suggests a trend toward increasing in-plane compressive stress with increasing oxygen concentration. Glancing-angle x- ray diffraction (XRD) was complimentary to the Raman data and indicates the presence of a TiC interfacial layer thickness which decreases with increasing oxygen concentration. We found that the CO/H2 mixture resulted in poorly adhered “white soot” films with low diamond content whereas the CH4/O2/H2 mixture yielded well adhered high quality diamond films.


2018 ◽  
Vol 667 ◽  
pp. 102-110 ◽  
Author(s):  
Jun Deng ◽  
Li-Feng Ren ◽  
Li Ma ◽  
Chang-Kui Lei ◽  
Gao-Ming Wei ◽  
...  

Author(s):  
Sage L. Kokjohn ◽  
Rolf D. Reitz

In this work, a multimode combustion model that combines a comprehensive kinetics scheme for volumetric heat release and a level-set-based model for turbulent flame propagation is applied over the range of engine combustion regimes from non-premixed to premixed conditions. The model predictions of the ignition processes and flame structures are compared with the measurements from the literature of naturally occurring luminous emission and OH planar laser induced fluorescence. Comparisons are performed over a range of conditions from a conventional diesel operation (i.e., short ignition delay, high oxygen concentration) to a low temperature combustion mode (i.e., long ignition delay, low oxygen concentration). The multimode combustion model shows an excellent prediction of the bulk thermodynamic properties (e.g., rate of heat release), as well as local phenomena (i.e., ignition location, fuel and combustion intermediate species distributions, and flame structure). The results of this study show that, even in the limit of mixing controlled combustion, the flame structure is captured extremely well without considering subgrid scale turbulence-chemistry interactions. The combustion process is dominated by volumetric heat release in a thin zone around the periphery of the jet. The rate of combustion is controlled by the transport of a reactive mixture to the reaction zone, and the dominant mixing processes are well described by the large scale mixing and diffusion. As the ignition delay is increased past the end of injection (i.e., positive ignition dwell), both the simulations and optical engine experiments show that the reaction zone spans the entire jet cross section. In this combustion mode, the combustion rate is no longer limited by the transport to the reaction zone, but rather by the kinetic time scales. Although comparisons of results with and without consideration of flame propagation show very similar flame structures and combustion characteristics, the addition of the flame propagation model reveals details of the edge or triple-flame structure in the region surrounding the diffusion flame at the lift-off location. These details are not captured by the purely kinetics based combustion model, but are well represented by the present multimode model.


Sign in / Sign up

Export Citation Format

Share Document