Low-Temperature Diffusivity of Hydrogen in Different Silicon Substrates

1995 ◽  
Vol 378 ◽  
Author(s):  
Xiaojun Deng ◽  
Bhushan L. Sopori

AbstractThe diffusivity of deuterium (D) at 250°C was determined in silicon samples grown by different techniques. It is found that the diffusivity increases with the growth speed, increase in carbon content and a decrease in oxygen concentration of the substrate. These growth conditions correlate well with the concentration of vacancy-type defects in the as-grown state. Hence, we conclude that a vacancy mechanism is responsible for low-temperature hydrogen diffusion in silicon. The highest diffusivity for hydrogen, calculated from these data, was found to be 3 × 10−7 cm2/s.

2015 ◽  
Vol 107 (26) ◽  
pp. 261107 ◽  
Author(s):  
Zihao Wang ◽  
Ruizhe Yao ◽  
Stefan F. Preble ◽  
Chi-Sen Lee ◽  
Luke F. Lester ◽  
...  

2008 ◽  
Vol 600-603 ◽  
pp. 207-210 ◽  
Author(s):  
Marcin Zielinski ◽  
Marc Portail ◽  
Thierry Chassagne ◽  
Yvon Cordier

We discuss the influence of the growth conditions (composition of the gaseous phase, growth duration, growth temperature) and wafer properties (orientation, miscut, thickness) on the residual strain of 3C-SiC films grown on silicon substrates. We show that the strain related effects are observed for both studied orientations however some of them (namely the creep effects) were up to now stated only for (100) oriented layers. We also point out the main difference in strain control between the (111) and (100) orientations.


2014 ◽  
Vol 112 (2) ◽  
pp. 406-411 ◽  
Author(s):  
Arijit Maitra ◽  
Ken A. Dill

We are interested in the balance of energy and protein synthesis in bacterial growth. How has evolution optimized this balance? We describe an analytical model that leverages extensive literature data on growth laws to infer the underlying fitness landscape and to draw inferences about what evolution has optimized inEscherichia coli. IsE. colioptimized for growth speed, energy efficiency, or some other property? Experimental data show that at its replication speed limit,E. coliproduces about four mass equivalents of nonribosomal proteins for every mass equivalent of ribosomes. This ratio can be explained if the cell’s fitness function is the the energy efficiency of cells under fast growth conditions, indicating a tradeoff between the high energy costs of ribosomes under fast growth and the high energy costs of turning over nonribosomal proteins under slow growth. This model gives insight into some of the complex nonlinear relationships between energy utilization and ribosomal and nonribosomal production as a function of cell growth conditions.


2021 ◽  
Vol 1016 ◽  
pp. 1331-1336
Author(s):  
Kosuke Shibata ◽  
Takuya Hiramatsu ◽  
Atsuhiro Shiraki ◽  
Junichiro Kinugasa ◽  
Tatsuya Asai ◽  
...  

In this study, the relationship between hydrogen embrittlement resistance (HER) and the microstructure of low temperature tempered martensite was investigated using steel sheets which were controlled by carbon content and tempering conditions. Focusing on transition carbides and interstitial carbon content which are peculiar microstructures to low temperature tempered martensite, microstructure was evaluated by synchrotron radiation X-ray diffraction (SR-XRD). The HER was evaluated by U-bending and fracture surface was observed after the slow strain rate test (SSRT). As the result, the HER was improved and fracture morphology was changed from intergranular to quasi-cleavage when the high carbon content and high temperature tempering were adopted. In the steels improved the HER, the increase of the volume fraction of transition carbides and the decrease of interstitial carbon content was confirmed. Hydrogen trapping by the transition carbides could explain the change of the HER and fracture morphology. These results suggested that the hydrogen trapping by the transition carbides was effective to improve the HER of the low temperature tempering martensitic steels.


2018 ◽  
Vol 2018 (1) ◽  
pp. 000728-000733
Author(s):  
Piotr Mackowiak ◽  
Rachid Abdallah ◽  
Martin Wilke ◽  
Jash Patel ◽  
Huma Ashraf ◽  
...  

Abstract In the present work we investigate the quality of low temperature Plasma Enhanced Chemical Vapor Deposition (PECVD) and plasma treated Tetraethyl orthosilicate (TEOS)-based TSV-liner films. Different designs of Trough Silicon Via (TSV) Test structures with 10μm and 20μm width and a depth of 100μm have been fabricated. Two differently doped silicon substrates have been used – highly p-doped and moderately doped. The results for break-through, resistivity and capacitance for the 20μm structures show a better performance compared to the 10μm structures. This is mainly due to increased liner thickness in the reduced aspect ratio case. Lower interface traps and oxide charge densities have been observed in the C-V measurements results for the 10μm structures.


Sign in / Sign up

Export Citation Format

Share Document