Adhesion improvement at the PMMA bone cement-titanium implant interface using methyl methacrylate atmospheric pressure plasma polymerization

2016 ◽  
Vol 294 ◽  
pp. 201-209 ◽  
Author(s):  
Pieter Cools ◽  
Nathalie De Geyter ◽  
Els Vanderleyden ◽  
Fabrizio Barberis ◽  
Peter Dubruel ◽  
...  
Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 219 ◽  
Author(s):  
Siavash Asadollahi ◽  
Jacopo Profili ◽  
Masoud Farzaneh ◽  
Luc Stafford

Water-repellent surfaces, often referred to as superhydrophobic surfaces, have found numerous potential applications in several industries. However, the synthesis of stable superhydrophobic surfaces through economical and practical processes remains a challenge. In the present work, we report on the development of an organosilicon-based superhydrophobic coating using an atmospheric-pressure plasma jet with an emphasis on precursor fragmentation dynamics as a function of power and precursor flow rate. The plasma jet is initially modified with a quartz tube to limit the diffusion of oxygen from the ambient air into the discharge zone. Then, superhydrophobic coatings are developed on a pre-treated microporous aluminum-6061 substrate through plasma polymerization of HMDSO in the confined atmospheric pressure plasma jet operating in nitrogen plasma. All surfaces presented here are superhydrophobic with a static contact angle higher than 150° and contact angle hysteresis lower than 6°. It is shown that increasing the plasma power leads to a higher oxide content in the coating, which can be correlated to higher precursor fragmentation, thus reducing the hydrophobic behavior of the surface. Furthermore, increasing the precursor flow rate led to higher deposition and lower precursor fragmentation, leading to a more organic coating compared to other cases.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 396 ◽  
Author(s):  
Choon-Sang Park ◽  
Eun Jung ◽  
Hyo Jang ◽  
Gyu Bae ◽  
Bhum Shin ◽  
...  

Pinhole free layers are needed in order to prevent oxygen and water from damaging flexible electrical and bio-devices. Although polymerized methyl methacrylate (polymethyl methacrylate, PMMA) for the pinhole free layer has been studied extensively in the past, little work has been done on synthesizing films of this material using atmospheric pressure plasma-assisted electro-polymerization. Herein, we report the synthesis and properties of plasma-PMMA (pPMMA) synthesized using the atmospheric pressure plasma-assisted electro-polymerization technique at room temperature. According to the Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and time of flight-secondary ion mass spectrometry (ToF-SIMS) results, the characteristic peaks from the pPMMA polymer chain were shown to have been detected. The results indicate that the percentage of hydrophobic groups (C–C and C–H) is greater than that of hydrophilic groups (C–O and O–C=O). The field emission-scanning electron microscope (FE-SEM) and thickness measurement results show that the surface morphology is quite homogenous and amorphous in nature, and the newly proposed pPMMA film at a thickness of 1.5 µm has high transmittance (about 93%) characteristics. In addition, the results of water contact angle tests show that pPMMA thin films can improve the hydrophobicity.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2679
Author(s):  
Věra Mazánková ◽  
Pavel Sťahel ◽  
Petra Matoušková ◽  
Antonín Brablec ◽  
Jan Čech ◽  
...  

Polyoxazoline thin coatings were deposited on glass substrates using atmospheric pressure plasma polymerization from 2-ethyl-2-oxazoline vapours. The plasma polymerization was performed in dielectric barrier discharge burning in nitrogen at atmospheric pressure. The thin films stable in aqueous environments were obtained at the deposition with increased substrate temperature, which was changed from 20 ∘C to 150 ∘C. The thin film deposited samples were highly active against both S. aureus and E. coli strains in general. The chemical composition of polyoxazoline films was studied by FTIR and XPS, the mechanical properties of films were studied by depth sensing indentation technique and by scratch tests. The film surface properties were studied by AFM and by surface energy measurement. After tuning the deposition parameters (i.e., monomer flow rate and substrate temperature), stable films, which resist bacterial biofilm formation and have cell-repellent properties, were achieved. Such antibiofouling polyoxazoline thin films can have many potential biomedical applications.


2014 ◽  
Vol 63 (12) ◽  
pp. 2023-2029 ◽  
Author(s):  
Miguelina Vasquez-Ortega ◽  
Mauricio Ortega ◽  
Juan Morales ◽  
M Guadalupe Olayo ◽  
Guillermo J Cruz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document