scholarly journals P1NM.11 - Conductive Porous Polymer Synthesis via a Novel Atmospheric Pressure Plasma Polymerization and Its Application to Gas Sensors

2018 ◽  
Author(s):  
C.-S. Park ◽  
E. Y. Jung ◽  
D. H. Kim ◽  
D. Kim ◽  
G. T. Bae ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1783
Author(s):  
Choon-Sang Park ◽  
Do Yeob Kim ◽  
Eun Young Jung ◽  
Hyo Jun Jang ◽  
Gyu Tae Bae ◽  
...  

New nanostructured conducting porous polythiophene (PTh) films are directly deposited on substrates at room temperature (RT) by novel atmospheric pressure plasma jets (APPJs) polymerization technique. The proposed plasma polymerization synthesis technique can grow the PTh films with a very fast deposition rate of about 7.0 μm·min−1 by improving the sufficient nucleation and fragment of the thiophene monomer. This study also compares pure and iodine (I2)-doped PTh films to demonstrate the effects of I2 doping. To check the feasibility as a sensing material, NO2-sensing properties of the I2-doped PTh films-based gas sensors are also investigated. As a result, the proposed APPJs device can produce the high density, porous and ultra-fast polymer films, and polymers-based gas sensors have high sensitivity to NO2 at RT. Our approach enabled a series of processes from synthesis of sensing materials to fabrication of gas sensors to be carried out simultaneously.


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 219 ◽  
Author(s):  
Siavash Asadollahi ◽  
Jacopo Profili ◽  
Masoud Farzaneh ◽  
Luc Stafford

Water-repellent surfaces, often referred to as superhydrophobic surfaces, have found numerous potential applications in several industries. However, the synthesis of stable superhydrophobic surfaces through economical and practical processes remains a challenge. In the present work, we report on the development of an organosilicon-based superhydrophobic coating using an atmospheric-pressure plasma jet with an emphasis on precursor fragmentation dynamics as a function of power and precursor flow rate. The plasma jet is initially modified with a quartz tube to limit the diffusion of oxygen from the ambient air into the discharge zone. Then, superhydrophobic coatings are developed on a pre-treated microporous aluminum-6061 substrate through plasma polymerization of HMDSO in the confined atmospheric pressure plasma jet operating in nitrogen plasma. All surfaces presented here are superhydrophobic with a static contact angle higher than 150° and contact angle hysteresis lower than 6°. It is shown that increasing the plasma power leads to a higher oxide content in the coating, which can be correlated to higher precursor fragmentation, thus reducing the hydrophobic behavior of the surface. Furthermore, increasing the precursor flow rate led to higher deposition and lower precursor fragmentation, leading to a more organic coating compared to other cases.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2679
Author(s):  
Věra Mazánková ◽  
Pavel Sťahel ◽  
Petra Matoušková ◽  
Antonín Brablec ◽  
Jan Čech ◽  
...  

Polyoxazoline thin coatings were deposited on glass substrates using atmospheric pressure plasma polymerization from 2-ethyl-2-oxazoline vapours. The plasma polymerization was performed in dielectric barrier discharge burning in nitrogen at atmospheric pressure. The thin films stable in aqueous environments were obtained at the deposition with increased substrate temperature, which was changed from 20 ∘C to 150 ∘C. The thin film deposited samples were highly active against both S. aureus and E. coli strains in general. The chemical composition of polyoxazoline films was studied by FTIR and XPS, the mechanical properties of films were studied by depth sensing indentation technique and by scratch tests. The film surface properties were studied by AFM and by surface energy measurement. After tuning the deposition parameters (i.e., monomer flow rate and substrate temperature), stable films, which resist bacterial biofilm formation and have cell-repellent properties, were achieved. Such antibiofouling polyoxazoline thin films can have many potential biomedical applications.


2014 ◽  
Vol 63 (12) ◽  
pp. 2023-2029 ◽  
Author(s):  
Miguelina Vasquez-Ortega ◽  
Mauricio Ortega ◽  
Juan Morales ◽  
M Guadalupe Olayo ◽  
Guillermo J Cruz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document