Microstructure, wear, and oxidation resistance of nanostructured carbide-strengthened cobalt-based composite coatings on Invar alloys by laser cladding

2020 ◽  
Vol 381 ◽  
pp. 125188 ◽  
Author(s):  
Yun Zou ◽  
Binghui Ma ◽  
Haichao Cui ◽  
Fenggui Lu ◽  
Peiquan Xu
2010 ◽  
Vol 150-151 ◽  
pp. 1429-1432
Author(s):  
Gui Hua Li ◽  
Yong Zou ◽  
Zeng Da Zou ◽  
Xu Wei Dong

The Fe-based composite coating reinforced by in situ synthesized multiphase ceramic particles has been successfully prepared by laser cladding preplaced powder on 42CrMo steel. The experimental results of X-ray diffraction and scanning electron micrograph indicate the coating is consisted by γ-Fe phase and Fe-Cr fine phase which possesses the better oxidation resistance and corrosion resistance. In-situ synthesized V(C,N), Cr2B3 and Cr3C2 particulates which are uniformly distributed in the composite coatings. The wear test showed that these reinforcement particulates improved significantly wear resistance of the coatings. The wear mass loss of the coating is about one tenth of the 42CrMo substrate. Laser cladding layers have better oxidation resistance. The oxide scale of the coatings is one eighth of the substrate through 750 constant temperature for 120h oxidation.


2015 ◽  
Vol 42 (10) ◽  
pp. 1003004
Author(s):  
余鹏程 Yu Pengcheng ◽  
刘秀波 Liu Xiubo ◽  
陆小龙 Lu Xiaolong ◽  
朱刚贤 Zhu Gangxian ◽  
陈瑶 Chen Yao ◽  
...  

2019 ◽  
Vol 27 (2) ◽  
pp. 316-325
Author(s):  
刘洪喜 LIU Hong-xi ◽  
赵艳爽 ZHAO Yan-shuang ◽  
张晓伟 ZHANG Xiao-wei ◽  
郝轩宏 HAO Xuan-hong ◽  
张璐璐 ZHANG Lu-lu

RSC Advances ◽  
2015 ◽  
Vol 5 (93) ◽  
pp. 76516-76525 ◽  
Author(s):  
Peng-Cheng Yu ◽  
Xiu-Bo Liu ◽  
Xiao-Long Lu ◽  
Shi-Jie Qiao ◽  
Yong-Jie Zhai ◽  
...  

In order to improve the high-temperature wear and oxidation resistance of Ti6Al4V alloys simultaneously, NiCrBSiFe composite coatings were deposited on a Ti6Al4V alloy by laser cladding.


2008 ◽  
Author(s):  
Ruiquan Kang ◽  
Mingxing Ma ◽  
Wenjin Liu ◽  
Minlin Zhong ◽  
Yide Kan ◽  
...  

2019 ◽  
Vol 28 (3) ◽  
pp. 433-443 ◽  
Author(s):  
Mingwen Bai ◽  
Bo Song ◽  
Liam Reddy ◽  
Tanvir Hussain

Abstract MCrAlY–Al2O3 composite coatings were prepared by high-velocity oxygen fuel thermal spraying with bespoke composite powder feedstock for high-temperature applications. Powder processing via a suspension route was employed to achieve a fine dispersion of α-Al2O3 submicron particles on the MCrAlY powder surface. This was, however, compromised by ~ 50% less flowability of the feedstock during spraying. Nevertheless, the novel powder manufacturing process introduced in this study has shown potential as an alternative route to prepare tailored composite powder feedstock for the production of metal matrix composites. In addition, the newly developed MCrAlY–Al2O3 composite coatings exhibited superior oxidation resistance, compared to conventional MCrAlY coatings, with the formation of nearly exclusively Al2O3 scale after isothermal oxidation at 900 °C for 10 h. The addition of α-Al2O3 particles in the MCrAlY coatings as a second phase was found to have promoted the formation of YAG oxides (YxAlyOz) during spraying and also accelerated the outwards diffusion of Al, which resulted in enhanced oxidation resistance.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 843
Author(s):  
Sipiwe Trinity Nyadongo ◽  
Sisa Lesley Pityana ◽  
Eyitayo Olatunde Olakanmi

It is anticipated that laser cladding assisted with preheat (LCAP)-deposited Tribaloy (T-800) composite coatings enhances resistance to structural degradation upon exposure to elevated-temperature oxidation service environments. The oxidation kinetics of LCAP T-800 composite coatings deposited on EN8 substrate and its mechanisms have not been explored in severe conditions that are similar to operational parameters. The isothermal oxidation behaviour of the T-800 composite coating deposited on EN8 via LCAP was studied at 800 °C in air for up to 120 h (5 × 24 h cycles) and contrasted to that of uncoated samples. The mass gain per unit area of the coating was eight times less than that of the uncoated EN8 substrate. The parabolic rate constant (Kp) for EN8 was 6.72 × 10−12 g2·cm−4·s−1, whilst that for the T-800 composite coating was 8.1 × 10−13 g2·cm−4·s−1. This was attributed to a stable chromium oxide (Cr2O3) layer that formed on the coating surface, thereby preventing further oxidation, whilst the iron oxide film that formed on the EN8 substrate allowed the permeation of the oxygen ions into the oxide. The iron oxide (Fe2O3) film that developed on EN8 spalled, as evidenced by the cracking of oxide when the oxidation time was greater than 72 h, whilst the Cr2O3 film maintained its integrity up to 120 h. A parabolic law was observed by the T-800 composite coating, whilst a paralinear law was reported for EN8 at 800 °C up to 120 h. This coating can be used in turbine parts where temperatures are <800 °C.


Sign in / Sign up

Export Citation Format

Share Document