Influence of tantalum pentoxide secondary phase on surface features and mechanical properties of hydroxyapatite coating on NiTi alloy produced by electrophoretic deposition

2020 ◽  
Vol 386 ◽  
pp. 125458 ◽  
Author(s):  
Nazila Horandghadim ◽  
Jafar Khalil-Allafi ◽  
Mustafa Urgen
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sirapat Pipattanachat ◽  
Jiaqian Qin ◽  
Dinesh Rokaya ◽  
Panida Thanyasrisung ◽  
Viritpon Srimaneepong

AbstractBiofilm formation on medical devices can induce complications. Graphene oxide/silver nanoparticles (GO/AgNPs) coated nickel-titanium (NiTi) alloy has been successfully produced. Therefore, the aim of this study was to determine the anti-bacterial and anti-biofilm effects of a GO/AgNPs coated NiTi alloy prepared by Electrophoretic deposition (EPD). GO/AgNPs were coated on NiTi alloy using various coating times. The surface characteristics of the coated NiTi alloy substrates were investigated and its anti-biofilm and anti-bacterial effect on Streptococcus mutans biofilm were determined by measuring the biofilm mass and the number of viable cells using a crystal violet assay and colony counting assay, respectively. The results showed that although the surface roughness increased in a coating time-dependent manner, there was no positive correlation between the surface roughness and the total biofilm mass. However, increased GO/AgNPs deposition produced by the increased coating time significantly reduced the number of viable bacteria in the biofilm (p < 0.05). Therefore, the GO/AgNPs on NiTi alloy have an antibacterial effect on the S. mutans biofilm. However, the increased surface roughness does not influence total biofilm mass formation (p = 0.993). Modifying the NiTi alloy surface using GO/AgNPs can be a promising coating to reduce the consequences of biofilm formation.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 334
Author(s):  
Aidong Xia ◽  
Jie Yin ◽  
Xiao Chen ◽  
Zhengren Huang ◽  
Xuejian Liu ◽  
...  

In this work, a (SiC-AlN)/ZrB2 composite with outstanding mechanical properties was prepared by using polymer-derived ceramics (PDCs) and hot-pressing technique. Flexural strength reached up to 460 ± 41 MPa, while AlN and ZrB2 contents were 10 wt%, and 15 wt%, respectively, under a hot-pressing temperature of 2000 °C. XRD pattern-evidenced SiC generated by pyrolysis of polycarbosilane (PCS) was mainly composed by 2H-SiC and 4H-SiC, both belonging to α-SiC. Micron-level ZrB2 secondary phase was observed inside the (SiC-AlN)/ZrB2 composite, while the mean grain size (MGS) of SiC-AlN matrix was approximately 97 nm. This unique nano-micron hybrid microstructure enhanced the mechanical properties. The present investigation provided a feasible tactic for strengthening ceramics from PDCs raw materials.


2021 ◽  
Author(s):  
Yuelong Wang ◽  
Xingyu Li ◽  
Haoyang Wu ◽  
Baorui Jia ◽  
Deyin Zhang ◽  
...  

Abstract Si3N4-based ceramic (Si3N4-5wt%Y2O3-3wt%MgO) was obtained from carbothermal-reduction-derived powder combined with gas pressure sintering. The phase, microstructure, thermal conductivity and mechanical properties of Si3N4 ceramics were comprehensively analyzed. Dense Si3N4 ceramic with uniform grain size was obtained after sintering at 1900°C for 7 h under a N2 pressure of 1.2 MPa. The secondary phase consisted of Y4Si2O7N2 and Y2Si3O3N4 was found to gather around triangular grain boundaries. The thermal conductivity, flexural strength, hardness and fracture toughness of the Si3N4 ceramics were 95.7 W·m-1·k-1, 715 MPa, 17.2 GPa and 7.2 MPa·m1/2, respectively. The results were compared with product derived from commercial powder, the improvement of thermal conductivity (~8.3%) and fracture toughness (~4.3%) demonstrating the superiority of Si3N4 ceramics prepared from carbothermal-reduction-derived powder.


2021 ◽  
pp. 1-21
Author(s):  
Partha Haldar ◽  
Tapas Kumar Bhattacharya ◽  
Nipu Modak

Abstract The study emphasized the sintering behaviour and tribo-mechanical properties of alumina ceramics by nano TiO2 addition as a sintering aid. With increase in sintering temperature, the bulk density of alumina has increased gradually and optimized at 1600°C. The optimizing effect of densification at 1600°C is 98.25% by the addition of 1 wt.% nano TiO2. The maximum solid solubility of titania in alumina grains was at 1600°C, causes optimisation of densification by 1 wt. % addition. The excess addition of TiO2 formed low dense Al2TiO5, appear as a secondary phase at grain boundaries and does not significantly improved densification. Fracture toughness increases and coefficient of friction decreases with the addition of nano TiO2 in alumina matrix. The 1wt.% nano TiO2 addition improved hardness to 8.82% and reduces specific wear rate to 45.56%. The 1wt.% nano TiO2 addition greatly influenced the microstructure of sintered Al2O3. The morphology was sharply changed from hexagonal columnar shape to order sub round orientation which also directly impact the tribo-mechanical properties of sintered alumina. The 1wt.% addition substantially decreases wear track depth as observed by 3D surface profilometer. Microscopic observation of the worn-out surface showed that wearing is majorly caused by plastic deformation and abrasion.


Sign in / Sign up

Export Citation Format

Share Document