Nitrogen plasma immersion ion implantation treatment of Ti6Al7Nb alloy for bone-implant applications: Enhanced in vitro biological responses and in vivo initial bone-implant contact

2021 ◽  
Vol 405 ◽  
pp. 126551
Author(s):  
Her-Hsiung Huang ◽  
Chia-Fei Liu ◽  
Shan Wang ◽  
Chiang-Sang Chen ◽  
Jean-Heng Chang
2013 ◽  
Vol 5 (4) ◽  
pp. 1510-1516 ◽  
Author(s):  
Ying Zhao ◽  
Sze Man Wong ◽  
Hoi Man Wong ◽  
Shuilin Wu ◽  
Tao Hu ◽  
...  

2021 ◽  
Vol 17 (9) ◽  
pp. 1812-1823
Author(s):  
Fei Liu ◽  
Xinyu Wang ◽  
Shujun Li ◽  
Yiheng Liao ◽  
Xinxin Zhan ◽  
...  

Ti–24Nb–4Zr–8Sn (Ti2448) alloys, with a relatively low elastic modulus and unique mechanical properties, are desirable materials for oral implantation. In the current study, a multifaceted strontium-incorporating nanotube coating was fabricated on a Ti2448 alloy (Ti2-NTSr) through anodization and hydrothermal procedures. In vitro, the Ti2-NTSr specimens demonstrated better osteogenic properties and more favorable osteoimmunomodulatory abilities. Moreover, macrophages on Ti2-NTSr specimens could improve the recruitment and osteogenic differentiation of osteoblasts. In vivo, dense clots with highly branched, thin fibrins and small pores existed on the Ti2-NTSr implant in the early stage after surgery. Analysis of the deposition of Ca and P elements, hard tissue slices and the bone-implant contact rate (BIC%) of the Ti2-NTSr implants also showed superior osseointegration. Taken together, these results demonstrate that the Ti2-NTSr coating may maximize the clinical outcomes of Ti2448 alloys for implantation applications.


2021 ◽  
Vol 19 ◽  
pp. 228080002110068
Author(s):  
Hsien-Te Chen ◽  
Hsin-I Lin ◽  
Chi-Jen Chung ◽  
Chih-Hsin Tang ◽  
Ju-Liang He

Here, we present a bone implant system of phase-oriented titanium dioxide (TiO2) fabricated by the micro-arc oxidation method (MAO) on β-Ti to facilitate improved osseointegration. This (101) rutile-phase-dominant MAO TiO2 (R-TiO2) is biocompatible due to its high surface roughness, bone-mimetic structure, and preferential crystalline orientation. Furthermore, (101) R-TiO2 possesses active and abundant hydroxyl groups that play a significant role in enhancing hydroxyapatite formation and cell adhesion and promote cell activity leading to osseointegration. The implants had been elicited their favorable cellular behavior in vitro in the previous publications; in addition, they exhibit excellent shear strength and promote bone–implant contact, osteogenesis, and tissue formation in vivo. Hence, it can be concluded that this MAO R-TiO2 bone implant system provides a favorable active surface for efficient osseointegration and is suitable for clinical applications.


2019 ◽  
Vol 8 (12) ◽  
pp. 2091 ◽  
Author(s):  
Stuart B. Goodman ◽  
Jiri Gallo

Clinical studies, as well as in vitro and in vivo experiments have demonstrated that byproducts from joint replacements induce an inflammatory reaction that can result in periprosthetic osteolysis (PPOL) and aseptic loosening (AL). Particle-stimulated macrophages and other cells release cytokines, chemokines, and other pro-inflammatory substances that perpetuate chronic inflammation, induce osteoclastic bone resorption and suppress bone formation. Differentiation, maturation, activation, and survival of osteoclasts at the bone–implant interface are under the control of the receptor activator of nuclear factor kappa-Β ligand (RANKL)-dependent pathways, and the transcription factors like nuclear factor κB (NF-κB) and activator protein-1 (AP-1). Mechanical factors such as prosthetic micromotion and oscillations in fluid pressures also contribute to PPOL. The treatment for progressive PPOL is only surgical. In order to mitigate ongoing loss of host bone, a number of non-operative approaches have been proposed. However, except for the use of bisphosphonates in selected cases, none are evidence based. To date, the most successful and effective approach to preventing PPOL is usage of wear-resistant bearing couples in combination with advanced implant designs, reducing the load of metallic and polymer particles. These innovations have significantly decreased the revision rate due to AL and PPOL in the last decade.


2007 ◽  
Vol 539-543 ◽  
pp. 710-715
Author(s):  
Kotaro Kuroda ◽  
Ryoichi Ichino ◽  
Masazumi Okido

Hydroxyapatite (HAp) coatings were formed on cp titanium plates and rods by the thermal substrate method in an aqueous solution that included 0.3 mM Ca(H2PO4)2 and 0.7 mM CaCl2. The coating experiments were conducted at 40-140 oC and pH = 8 for 15 or 30 min. The properties for the coated samples were studied using XRD, EDX, FT-IR, and SEM. All the specimens were covered with HAp, which had different surface morphologies such as net-like, plate-like and needle-like. After cleaning and sterilization, all the coated specimens were subjected to in vivo and vitro testing. In the in vitro testing, the mouse osteoblast-like cells (MC3T3-E1) were cultured on the coated and non-coated specimens for up to 30 days. Moreover, the specimens (φ2 x 5 mm) were implanted in rats femoral for up to 8 weeks, the osseoinductivity on them were evaluated. In in vitro evaluations, there were not significant differences between the different surface morphologies. In in vivo evaluations, however, two weeks postimplantation, new bone formed on both the HAp coated and non-coated titanium rods in the cancellous and cortical bone. The bone-implant contact ratio, which was used for the evaluation of new bone formation, was significantly dependent on the surface morphology of the HAp, and the results demonstrated that the needle-like coating appears to promote rapid bone formation.


Reproduction ◽  
2013 ◽  
Vol 145 (2) ◽  
pp. 127-135 ◽  
Author(s):  
Nazareth Loreti ◽  
Verónica Ambao ◽  
Luz Andreone ◽  
Romina Trigo ◽  
Ursula Bussmann ◽  
...  

Granulosa cell (GC) inhibin A and B production is regulated by FSH and gonadal factors. This gonadotrophin is released as a mixture of glycoforms, which induce different biological responses in vivo and in vitro. Our aim was to determine the effect of recombinant human FSH (rhFSH) glycosylation variants on inhibin A and B production by rat GCs. Preparative isoelectro focusing was used to isolate more acidic/sialylated (pH <4.00) and less acidic/sialylated (pH >5.00) rhFSH charge analogues. Concanavalin A was used to isolate unbound and firmly bound rhFSH glycoforms on the basis of their oligosaccharide complexity. GCs, obtained from oestrogen-primed immature rats, were cultured with either native rhFSH or its glycosylation variants. Inhibin A and B were determined using specific ELISAs. Results were expressed as mean±s.e.m. Under basal conditions, inhibin A was the predominant dimer produced (inhibin A: 673±55; inhibin B: 80±4 pg/ml). More acidic/sialylated charge analogues stimulated inhibin B production when compared to inhibin A at all doses studied; by contrast, less acidic/sialylated charge analogues stimulated inhibin A production and elicited no effect on inhibin B. Glycoforms bearing complex oligosaccharides showed a potent stimulatory effect on inhibin B when compared to inhibin A production (i.e. dose 1 ng/ml: 4.9±0.5 vs 0.9±0.1-fold stimulation, P<0.001). Glycoforms bearing hybrid-type oligosaccharides favoured inhibin A production (i.e. dose 4 ng/ml 2.9±0.1 vs 1.6±0.1-fold stimulation, P<0.05). These results show that the sialylation degree as well as the complexity of oligosaccharides present in the rhFSH molecule may be considered additional factors that differentially regulate dimeric inhibin production by rat GCs.


2007 ◽  
Vol 201 (9-11) ◽  
pp. 5273-5277 ◽  
Author(s):  
Hongxi Liu ◽  
Baoyin Tang ◽  
Langping Wang ◽  
Xiaofeng Wang ◽  
Bo Jiang

Sign in / Sign up

Export Citation Format

Share Document