Isolation and characterization of heterotrophic bacteria able to grow aerobically with quaternary ammonium alcohols as sole source of carbon and nitrogen

2005 ◽  
Vol 28 (3) ◽  
pp. 230-241 ◽  
Author(s):  
Andres Kaech ◽  
Nathalie Vallotton ◽  
Thomas Egli
2000 ◽  
Vol 66 (5) ◽  
pp. 2139-2147 ◽  
Author(s):  
Shirley F. Nishino ◽  
George C. Paoli ◽  
Jim C. Spain

ABSTRACT An oxidative pathway for the mineralization of 2,4-dinitrotoluene (2,4-DNT) by Burkholderia sp. strain DNT has been reported previously. We report here the isolation of additional strains with the ability to mineralize 2,4-DNT by the same pathway and the isolation and characterization of bacterial strains that mineralize 2,6-dinitrotoluene (2,6-DNT) by a different pathway.Burkholderia cepacia strain JS850 andHydrogenophaga palleronii strain JS863 grew on 2,6-DNT as the sole source of carbon and nitrogen. The initial steps in the pathway for degradation of 2,6-DNT were determined by simultaneous induction, enzyme assays, and identification of metabolites through mass spectroscopy and nuclear magnetic resonance. 2,6-DNT was converted to 3-methyl-4-nitrocatechol by a dioxygenation reaction accompanied by the release of nitrite. 3-Methyl-4-nitrocatechol was the substrate for extradiol ring cleavage yielding 2-hydroxy-5-nitro-6-oxohepta-2,4-dienoic acid, which was converted to 2-hydroxy-5-nitropenta-2,4-dienoic acid. 2,4-DNT-degrading strains also converted 2,6-DNT to 3-methyl-4-nitrocatechol but did not metabolize the 3-methyl-4-nitrocatechol. Although 2,6-DNT prevented the degradation of 2,4-DNT by 2,4-DNT-degrading strains, the effect was not the result of inhibition of 2,4-DNT dioxygenase by 2,6-DNT or of 4-methyl-5-nitrocatechol monooxygenase by 3-methyl-4-nitrocatechol.


2002 ◽  
Vol 45 (12) ◽  
pp. 175-179 ◽  
Author(s):  
J.H. Shi ◽  
Y. Suzuki ◽  
B.-D. Lee ◽  
S. Nakai ◽  
M. Hosomi

We cultivated hundreds of sediment, soil, and manure samples taken from rivers and farms in a medium containing ethynylestradiol (EE2) as the sole source of carbon, so that microorganisms in the samples would acclimatize to the presence of EE2. Finally, we isolated an EE2-degrading microorganism, designated as strain HNS-1, from a cowshed sample. Based on its partial nucleotide sequence (563 bp) of the 28S rRNA gene, strain HNS-1 was identified as Fusarium proliferatum. Over 15 days, F. proliferatum strain HNS-1 removed 97% of EE2 at an initial concentration of 25 mg.L−1, with a first-order rate constant of 0.6 d−1. Unknown products of EE2 degradation, which may be more polar compounds that have a phenolic group, remained in the culture medium.


Author(s):  
Kesi Kurnia ◽  
Nina Hermayani Sadi ◽  
Syafitri Jumianto

<span>Pollution of water environment with heavy metals is becoming one of the most severe environmental and human health hazards. Lead (Pb) is a major pollutant and highly toxic to human, animals, plants, and microbes. </span><span lang="IN">Toxic metals are difficult to remove from the environment, since they cannot be chemically or biologically degraded and are ultimately indestructible. Biological approaches based on metal-resistant microorganisms have received a great deal of attention as alternative remediation processes. </span><span>This study aim to isolat</span><span lang="IN">e</span><span> and characterize Pb resistant of heterotrophic bacteria in Cilalay Lake, </span><span lang="IN">West Java, </span><span>Indonesia. The water samples were collected </span><span lang="IN">along</span><span> three points around Cilalay Lake. </span><span lang="IN">Water physical and chemical </span><span>determination was performed using the Water Quality Checker</span><span lang="IN">. </span><span>The bacterial isolates were screened on T</span><span lang="IN">r</span><span>ipton</span><span lang="IN">e</span><span> Glucose Yeast (TGY) agar plates. </span><span lang="IN">Afterwards s</span><span>elected isolates were grown on Nutrient Agar media 50% </span><span lang="IN">with </span><span>supplemented Pb 100 ppm by the standard disk. Population of resistant bacteria was counted. The result from metal resistant bacteria indicated that all isolates w</span><span lang="IN">ere</span><span> resistant. The most abundant type of resistant </span><span lang="IN">bacteria </span><span>to lead was Gram negative more than Gram positive. Identified have metal resistant bacteria could be useful for the bioremediation of heavy metal contaminated sewage and waste water</span>


2012 ◽  
Vol 62 ◽  
pp. 52-60 ◽  
Author(s):  
Yendi E. Navarro-Noya ◽  
Emma Hernández-Mendoza ◽  
Jesús Morales-Jiménez ◽  
Janet Jan-Roblero ◽  
Esperanza Martínez-Romero ◽  
...  

2001 ◽  
Vol 28 (1) ◽  
pp. 158-174 ◽  
Author(s):  
M Gamache ◽  
J F Blais ◽  
R D Tyagi ◽  
N Meunier

Until now, some microbiological studies have made it possible to highlight the role and identification of certain chimiolithotroph microorganisms directly involved in the simultaneous sewage sludge digestion and metal leaching (SSDML process). Moreover, some other studies have established the performance of the SSDML process for the destruction of pathogens. However, until now no study has been carried out to define the equilibrium of the heterotrophic microbial populations during the sludge acidification occurring during the operation of the SSDML process. Hence, the SSDML process was studied in batch and continuous mode employing different types of sludges (Communauté Urbaine de Québec (CUQ)-East primary sludge, Beauceville secondary sludge, and mixture of primary and secondary Valcartier sludge). The equilibrium of heterotrophic microbial populations was investigated along with sludge acidification and solids degradation. The results obtained during the SSDML process on different sludges showed a decrease followed by the destruction of a majority of heterotrophic bacterial species found in fresh sludges. The isolation and characterization of different microbial species showed that only two types of microorganisms persisted: the yeast Blastoschizomyces capitatus and an unidentified fungus.Key words: sewage sludge, simultanous bioleaching and digestion, heterotrophic bacteria, Blastoschizomyces capitatus, fungi.


2000 ◽  
Vol 66 (8) ◽  
pp. 3134-3141 ◽  
Author(s):  
Edward Topp ◽  
Walter M. Mulbry ◽  
Hong Zhu ◽  
Sarah M. Nour ◽  
Diane Cuppels

ABSTRACT Atrazine, a herbicide widely used in corn production, is a frequently detected groundwater contaminant. Nine gram-positive bacterial strains able to use this herbicide as a sole source of nitrogen were isolated from four farms in central Canada. The strains were divided into two groups based on repetitive extragenic palindromic (rep)-PCR genomic fingerprinting with ERIC and BOXA1R primers. Based on 16S ribosomal DNA sequence analysis, both groups were identified as Nocardioides sp. strains. None of the isolates mineralized [ring-U-14C]atrazine. There was no hybridization to genomic DNA from these strains usingatzABC cloned from Pseudomonas sp. strain ADP or trzA cloned from Rhodococcus corallinus. S-Triazine degradation was studied in detail inNocardioides sp. strain C190. Oxygen was not required for atrazine degradation by whole cells or cell extracts. Based on high-pressure liquid chromatography and mass spectrometric analyses of products formed from atrazine in incubations of whole cells with H2 18O, sequential hydrolytic reactions converted atrazine to hydroxyatrazine and then to the end productN-ethylammelide. Isopropylamine, the putative product of the second hydrolytic reaction, supported growth as the sole carbon and nitrogen source. The triazine hydrolase from strain C190 was isolated and purified and found to have a Km for atrazine of 25 μM and a V max of 31 μmol/min/mg of protein. The subunit molecular mass of the protein was 52 kDa. Atrazine hydrolysis was not inhibited by 500 μM EDTA but was inhibited by 100 μM Mg, Cu, Co, or Zn. Whole cells and purified triazine hydrolase converted a range of chlorine or methylthio-substituted herbicides to the corresponding hydroxy derivatives. In summary, an atrazine-metabolizingNocardioides sp. widely distributed in agricultural soils degrades a range of s-triazine herbicides by means of a novel s-triazine hydrolase.


2020 ◽  
Vol 2 (2) ◽  
pp. 12-16
Author(s):  
Obhioze Augustine Akpoka

The capability of indigenous bacteria and microalgae in crude oil effluents to grow in and utilize crude oil as their sole source of carbon and energy provides an environmentally friendly and economical process for dealing with crude oil pollution and its inherent hazards. In view of the toxicity of crude oil spillages to indwellers of the affected ecosystems and the entire affected environment, the isolation of pure bacterial and microalgae cultures from crude effluents is a step in the right direction, particularly for bio-augmentation or bioremediation purposes. The total heterotrophic bacteria count and hydrocarbon utilizing bacteria count, as well as the microalgae count, were determined with the pour plate technique. The physicochemical properties of the effluent samples were also analyzed. Identification of the hydrocarbon utilizing bacteria was performed with phenotypic techniques. The result shows a mean total heterotrophic bacterium count of 5.91 log CFU/ml and a mean microalga count of 4.77 log cells/ml. When crude oil and polycyclic aromatic hydrocarbon (PAH) were used as sole carbon sources, total hydrocarbon utilizing bacteria counts were respectively estimated at 3.89 and 2.89 log CFU/ml. Phenotypic identification of hydrocarbon utilizing bacteria in the crude oil effluents revealed the presence of two main bacterial genera: Streptococcus and Pseudomonas. Data obtained from this study confirmed the biodegradative abilities of indigenous bacterial species, thus, ultimately resulting in the amelioration of the toxicity associated with the crude oil effluents.


Author(s):  
H. D. Nyarko ◽  
G. C. Okpokwasili ◽  
O. F. Joel ◽  
I. A. K. Galyuon

Aims: The study aimed at the quantification, isolation and characterization of hydrocarbon degrading bacteria in oil-contaminated and pristine soils. Methodology: Soil samples from petroleum hydrocarbon polluted sites at auto-mechanic workshops, a mechanic village, as well as pristine (control) soils, comprising of 14 sampling locations within Cape Coast Metropolis in the Central Region of Ghana were collected using standard sampling techniques. Collected soil samples were treated and cultured while enumerations, isolations and characterization of carbonoclastic bacteria associated were evaluated. Results: Bacterial populations isolated from hydrocarbon-polluted sites had higher aerobic counts ranging from 7.24-8.02 log10 cfu/g of soil when compared with the pristine sites (from 6.79-7.61 log10 cfu/g of soil). Also, soil samples from the mechanic village (8.76 to 7.48 log10 cfu/g of soil) recorded more bacterial counts than those from the mechanic garages (8.02 to 7.24 log10 cfu/g of soil). The calculated percentage profiles of all the hydrocarbon utilizing bacteria in the total culturable heterotrophic bacteria were low throughout the study, even though the percentage scores were all above 50%. A total of 19 hydrocarbon degraders were isolated. The isolates identified belong to the genera Pseudomonas, Proteus, Bacillus and Enterobacter. Conclusion: The outcome of the study based on the bacteria populations, identification profiles, coupled with their survival and multiplications in designated medium amended with crude oil as the carbon and energy sources, suggest their petroleum hydrocarbon degrading capabilities, hence may be used in bioremediation applications.


Sign in / Sign up

Export Citation Format

Share Document