Microbial communities involved in biogas production from wheat straw as the sole substrate within a two-phase solid-state anaerobic digestion

2014 ◽  
Vol 37 (8) ◽  
pp. 590-600 ◽  
Author(s):  
Kathrin Heeg ◽  
Marcel Pohl ◽  
Mario Sontag ◽  
Jan Mumme ◽  
Michael Klocke ◽  
...  
2014 ◽  
Vol 99 (2) ◽  
pp. 969-980 ◽  
Author(s):  
Yueh-Fen Li ◽  
Michael C. Nelson ◽  
Po-Hsu Chen ◽  
Joerg Graf ◽  
Yebo Li ◽  
...  

2019 ◽  
Vol 293 ◽  
pp. 122066 ◽  
Author(s):  
Yang Liu ◽  
Junnan Fang ◽  
Xinyu Tong ◽  
ChenChen Huan ◽  
Gaosheng Ji ◽  
...  

2018 ◽  
Vol 24 (12) ◽  
pp. 9875-9876
Author(s):  
Winardi Dwi Nugraha ◽  
Syafrudin ◽  
Windy Surya Permana ◽  
Hashfi Hawali Abdul Matin ◽  
Budiyono

Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 133 ◽  
Author(s):  
Shiwei Wang ◽  
Fang Ma ◽  
Weiwei Ma ◽  
Ping Wang ◽  
Guang Zhao ◽  
...  

In this study, the influence of temperature on biogas production efficiency and the microbial community structure was investigated in a two-phase anaerobic digestion reactor for co-digestion of cow manure and corn straw. The results illustrated that the contents of solluted chemical oxygen demand (SCOD) and volatile fatty acid (VFA) in the acidogenic phase and biogas production in the methanogenic phase maintained relatively higher levels at temperatures ranging from 35–25 °C. The methane content of biogas production could be maintained higher than 50% at temperatures above 25 °C. The microbial community structure analysis indicated that the dominant functional bacteria were Acinetobacter, Acetitomaculum, and Bacillus in the acidogenic phase and Cenarchaeum in the methanogenic phase at 35–25 °C. However, the performances of the acidogenic phase and the methanogenic phase could be significantly decreased at a lower temperature of 20 °C, and microbial activity was inhibited obviously. Accordingly, a low temperature was adverse for the performance of the acidogenic and methanogenic phases, while moderate temperatures above 25 °C were more conducive to high biogas production efficiency.


2018 ◽  
Vol 31 ◽  
pp. 02007 ◽  
Author(s):  
Hashfi Hawali Abdul Matin ◽  
Hadiyanto

An effort to obtain alternative energy is still interesting subject to be studied, especially production of biogas from agriculture waste. This paper was an overview of the latest development of biogas researches from rice husk waste by Solid State Anaerobic Digestion (SSAD). The main obstacle of biogas production from rice husk waste was the lignin content which is very difficult degraded by microbes. Various pretreatments have been conducted, either physically, chemically as well as biologically. The SSAD method was an attractive option because of the low water content of rice husk waste. The biogas yield by SSAD method gave more attractive result compared to Liquid Anaerobic Digestion (LAD) method. Various studies were still conducted in batch mode laboratory scale and also has not found optimum operating conditions. Research on a larger scale such as bench and pilot scale with continuous systems will be an increase trend in the future research.


2011 ◽  
Vol 697-698 ◽  
pp. 326-330 ◽  
Author(s):  
S.X. Zhou ◽  
Y.P. Dong ◽  
Y.L. Zhang

Microbial pretreatment was applied to enhance biogas production from corn stover through solid-state anaerobic digestion, but the price of microbial strains is high. The objective of this study was to find the effects on biogas production by the naturally microbial pretreatment method. The highest cumulative biogas yield for 60-day solid-state anaerobic digestion was obtained in B group (the pretreated corn straws with cow dung), which was 19.6% higher than that of the untreated samples. The D group(the pretreated corn straws with the sludge)cumulative biogas yield for 60-day solid-state anaerobic digestion was obtained, which was 18.87% higher than that of the untreted samples. The biogas of D group increased to the range of 55%~60% methane content, while B group with the range of 75%~80%.The results indicated that the pretreated corn straws mixing cow manure can improve both the biogas production yield and the content of methane in CH4。


2021 ◽  
Vol 12 ◽  
Author(s):  
Mads Borgbjerg Jensen ◽  
Nadieh de Jonge ◽  
Maja Duus Dolriis ◽  
Caroline Kragelund ◽  
Christian Holst Fischer ◽  
...  

The enzymatic hydrolysis of lignocellulosic polymers is generally considered the rate-limiting step to methane production in anaerobic digestion of lignocellulosic biomass. The present study aimed to investigate how the hydrolytic microbial communities of three different types of anaerobic digesters adapted to lignocellulose-rich wheat straw in continuous stirred tank reactors operated for 134 days. Cellulase and xylanase activities were monitored weekly using fluorescently-labeled model substrates and the enzymatic profiles were correlated with changes in microbial community compositions based on 16S rRNA gene amplicon sequencing to identify key species involved in lignocellulose degradation. The enzymatic activity profiles and microbial community changes revealed reactor-specific adaption of phylogenetically different hydrolytic communities. The enzymatic activities correlated significantly with changes in specific taxonomic groups, including representatives of Ruminiclostridium, Caldicoprobacter, Ruminofilibacter, Ruminococcaceae, Treponema, and Clostridia order MBA03, all of which have been linked to cellulolytic and xylanolytic activity in the literature. By identifying microorganisms with similar development as the cellulase and xylanase activities, the proposed correlation method constitutes a promising approach for deciphering essential cellulolytic and xylanolytic microbial groups for anaerobic digestion of lignocellulosic biomass.


Sign in / Sign up

Export Citation Format

Share Document