Electrical properties of TiO2-filled polyimide nanocomposite films prepared via an in situ polymerization process

2010 ◽  
Vol 160 (23-24) ◽  
pp. 2670-2674 ◽  
Author(s):  
Jun-Wei Zha ◽  
Zhi-Min Dang ◽  
Tao Zhou ◽  
Hong-Tao Song ◽  
George Chen
2008 ◽  
Vol 47-50 ◽  
pp. 987-990
Author(s):  
Yi He Zhang ◽  
Qing Song Su ◽  
Li Yu ◽  
Li Bing Liao ◽  
Hong Zheng ◽  
...  

Phlogopite with layered silicate structure had been firstly chemically modified via an in situ intercalation method, and phlogopite-polymer nanocomposite films were prepared from 2,2'-bis (3,4-dicarboxyphenyl) hexafluropropane dianhydride (6FDA) and oxydimethyl aniline (ODA) in N,N-dimethylacetamide as a solvent by using in-situ polymerization process combined with ultrasonic dispersion and multi-step curing. The structure of phlogopite minerals and its polymer nanocomposites were characterized by X-ray diffraction (XRD) and infrared spectra (FTIR) respectively. The experimental results indicated that the phlogopites with layered nanostructure had lost their ordered structure and had been exfoliated or intercalated. Thereafter, they were dispersed randomly in the polyimide matrix. The dependence of dielectric properties and thermal stabilities of the nanocomposite films on the phlogopite content and frequency were studied.


2011 ◽  
Vol 217-218 ◽  
pp. 647-651
Author(s):  
Yu Li ◽  
Yi He Zhang ◽  
Bo Shen ◽  
Feng Zhu Lv

The hollow silica was fabricated by using monodispersed polystyrene microspheres as core template and tetraethyl orthosilicate as silica source, and polyimide nanocomposite films with different hollow silica concentration were successfully prepared via in situ polymerization. The hollow silica and nanocomposite films were characterized. The results indicated that the diameter of the hollow silica is around 30nm and the dielectric constant of the nanocomposite films enhance with the increase of the concentration of the hollow silica.


2010 ◽  
Vol 25 (12) ◽  
pp. 2384-2391 ◽  
Author(s):  
Jun-Wei Zha ◽  
Ben-Hui Fan ◽  
Zhi-Min Dang ◽  
Sheng-Tao Li ◽  
George Chen

Polyimide (PI)-matrix composite films containing inorganic nanoparticles (nano-Al2O3 and nano-TiO2) have been fabricated. A proposed model is used to explain different structures of the (Al2O3–TiO2)/PI (ATP) films synthesized by employing in situ polymerization. Dependences of dielectric permittivities of the ATP films on frequency and temperature were studied. Results show the breakdown strength of the films decreases with prolonging the corona aging time. The incorporation of the nano-Al2O3 and nano-TiO2 particles significantly improves the corona resistance of the films. The corona aging also influences the infrared absorbance, the glass transition temperature (Tg), and loss factor (tanδ) of the ATP films.


2012 ◽  
Author(s):  
Bo Shen ◽  
Yihe Zhang ◽  
Li Yu ◽  
Fengzhu Lv ◽  
Jiwu Shang

Author(s):  
Jolly Bhadra ◽  
Hemalatha Parangusan ◽  
Zubair Ahmad ◽  
Shoaib Mallick ◽  
Farid Touati ◽  
...  

PANI coated Cu-ZnS porous microsphere structures have been synthesized by hydrothermal method and in-situ polymerization process. The synthesized composite is characterized by different techniques in order to study the structural, morphological and surface absorption properties. The experimental observation demonstrates that the PANI/1%Cu-ZnS composite has better sensitivity, fast response and good stability as compared to pure PANI and other PANI/CuZnS compositions. Finally, PANI/1% Cu-ZnS composite has been found to be optimized for the humidity sensors due to its well-distributed roughness, porosity and hydrophilicity. The average response and recovery times of the PANI/1% Cu-ZnS are found to be 42 s and 24 s, respectively, which outperform recent results.


2018 ◽  
Vol 16 ◽  
pp. 232-241 ◽  
Author(s):  
Antonio Cruz-Aguilar ◽  
Dámaso Navarro-Rodríguez ◽  
Odilia Pérez-Camacho ◽  
Salvador Fernández-Tavizón ◽  
Carlos Alberto Gallardo-Vega ◽  
...  

Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1078 ◽  
Author(s):  
Ji Min ◽  
Madhumita Patel ◽  
Won-Gun Koh

In the field of tissue engineering, conductive hydrogels have been the most effective biomaterials to mimic the biological and electrical properties of tissues in the human body. The main advantages of conductive hydrogels include not only their physical properties but also their adequate electrical properties, which provide electrical signals to cells efficiently. However, when introducing a conductive material into a non-conductive hydrogel, a conflicting relationship between the electrical and mechanical properties may develop. This review examines the strengths and weaknesses of the generation of conductive hydrogels using various conductive materials such as metal nanoparticles, carbons, and conductive polymers. The fabrication method of blending, coating, and in situ polymerization is also added. Furthermore, the applications of conductive hydrogel in cardiac tissue engineering, nerve tissue engineering, and bone tissue engineering and skin regeneration are discussed in detail.


RSC Advances ◽  
2015 ◽  
Vol 5 (56) ◽  
pp. 44749-44755 ◽  
Author(s):  
Yun-Hui Wu ◽  
Jun-Wei Zha ◽  
Zhi-Qiang Yao ◽  
Fang Sun ◽  
Robert K. Y. Li ◽  
...  

PI composite films with electrospun BT fibers were fabricated using the in situ dispersion polymerization method. The microstructures, thermal and dielectric properties of the BT fibers and composite films were investigated.


2010 ◽  
Vol 148-149 ◽  
pp. 1547-1550 ◽  
Author(s):  
Hua Lan Wang ◽  
Qing Li Hao ◽  
Xi Feng Xia ◽  
Zhi Jia Wang ◽  
Jiao Tian ◽  
...  

A graphene oxide/polyaniline composite was synthesized by an in situ polymerization process. This product was simply prepared in an ethylene glycol medium, using ammonium persulfate as oxidant in ice bath. The composite was characterized by field emission scanning electron microscopy, transmission electron microscopy, X-Ray photoelectron spectroscopy, Raman spectroscopy and electrochemical test. The composite material showed a good electrochemical performance.


Sign in / Sign up

Export Citation Format

Share Document