Numerical investigation on crack propagation process of concrete gravity dams under static and dynamic loads with in-crack reservoir pressure

Author(s):  
Yan-Jie Wang ◽  
Zhi-Min Wu ◽  
Fang-Mei Qu ◽  
Wang Zhang
2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Sha Sha ◽  
Guoxin Zhang

High-pressure hydraulic fracture (HF) is an important part of the safety assessment of high concrete dams. A stress-seepage-damage coupling model based on the finite element method is presented and first applied in HF in concrete dams. The coupling model has the following characteristics: (1) the strain softening behavior of fracture process zone in concrete is considered; (2) the mesh-dependent hardening technique is adopted so that the fracture energy dissipation is not affected by the finite element mesh size; (3) four coupling processes during hydraulic fracture are considered. By the damage model, the crack propagation processes of a 1 : 40 scaled model dam and Koyna dam are simulated. The results are in agreement with experimental and other numerical results, indicating that the damage model can effectively predict the carrying capacity and the crack trajectory of concrete gravity dams. Subsequently, the crack propagation processes of Koyna dam using three notches of different initial lengths are simulated by the damage model and the coupling model. And the influence of HF on the crack propagation path and carrying capacity is studied. The results reveal that HF has a significant influence on the global response of the dam.


2014 ◽  
Vol 513-517 ◽  
pp. 20-23
Author(s):  
Hai Chao Wang ◽  
Xue Hua Wang ◽  
Xue Hui An

The different fracture characteristics of self-compacting rock-filled concrete with large-size natural and recycled aggregate are analyzed by three-point bending experiment. According to the analysis of the crack propagation process, the fracture mechanism differences of self-compacting rock-filled concrete with large-size natural and recycled aggregate are discussed. The further analysis of the differences of fracture toughness, fracture energy, and are gain


2007 ◽  
Vol 2007.7 (0) ◽  
pp. 221-222
Author(s):  
Hiroyuki Tsuritani ◽  
Toshihiko Sayama ◽  
Yoshiyuki Okamoto ◽  
Takeshi Takayanagi ◽  
Kentaro Uesugi ◽  
...  

2011 ◽  
Vol 82 ◽  
pp. 374-379 ◽  
Author(s):  
Marco Paggi ◽  
Giuseppe Ferro ◽  
Franco Braga

The phenomenon of interface crack propagation in concrete gravity dams underseismic loading is herein addressed. This problem is particularly important from the engineeringpoint of view. In fact, besides Mixed-Mode crack growth in concrete, dam failure is oftenthe result of crack propagation along the rock-concrete interface at the dam foundation. Toanalyze such a problem, the generalized interface constitutive law recently proposed by the¯rst author is used to proper modelling the phenomenon of crack closing and reopening at theinterface. A damage variable is also introduced in the cohesive zone formulation in order topredict crack propagation under repeated loadings. Special attention is given to the complexityresulting from the solution of the nonlinear dynamic problem and to the choice of the interfaceconstitutive parameters, taking into account the important size-scale e®ects observed in thesecyclopic structures. Numerical examples will show the capabilities of the proposed approachwhen applied to concrete gravity dams.


Sign in / Sign up

Export Citation Format

Share Document