Combining 3D sidewall electrodes and contraction/expansion microstructures in microchip promotes isolation of cancer cells from red blood cells

Talanta ◽  
2019 ◽  
Vol 196 ◽  
pp. 546-555 ◽  
Author(s):  
Jie Yao ◽  
Jingxuan Chen ◽  
Xiaodong Cao ◽  
Hua Dong
2020 ◽  
Vol 62 ◽  
pp. 126640
Author(s):  
Benjamaporn Supawat ◽  
Phattharawadi Moungthong ◽  
Chananchida Chanloi ◽  
Natchaporn Jindachai ◽  
Singkome Tima ◽  
...  

2015 ◽  
Vol 3 (1) ◽  
pp. 25-29 ◽  
Author(s):  
Bei Cheng ◽  
Bindu Thapa ◽  
Remant K. C. ◽  
Peisheng Xu

A dual secured nano-melittin system fully retains the wide-spectrum anticancer efficacy of melittin while quenching its lytic activity for the red blood cells.


2021 ◽  
Vol 14 (4) ◽  
Author(s):  
Benjamaporn Supawat ◽  
Panumas Homnuan ◽  
Natthawan Kanthawong ◽  
Niyada Semrasa ◽  
Singkome Tima ◽  
...  

2017 ◽  
Vol 114 (18) ◽  
pp. 4591-4596 ◽  
Author(s):  
Shabnam A. Faraghat ◽  
Kai F. Hoettges ◽  
Max K. Steinbach ◽  
Daan R. van der Veen ◽  
William J. Brackenbury ◽  
...  

Currently, cell separation occurs almost exclusively by density gradient methods and by fluorescence- and magnetic-activated cell sorting (FACS/MACS). These variously suffer from lack of specificity, high cell loss, use of labels, and high capital/operating cost. We present a dielectrophoresis (DEP)-based cell-separation method, using 3D electrodes on a low-cost disposable chip; one cell type is allowed to pass through the chip whereas the other is retained and subsequently recovered. The method advances usability and throughput of DEP separation by orders of magnitude in throughput, efficiency, purity, recovery (cells arriving in the correct output fraction), cell losses (those which are unaccounted for at the end of the separation), and cost. The system was evaluated using three example separations: live and dead yeast; human cancer cells/red blood cells; and rodent fibroblasts/red blood cells. A single-pass protocol can enrich cells with cell recovery of up to 91.3% at over 300,000 cells per second with >3% cell loss. A two-pass protocol can process 300,000,000 cells in under 30 min, with cell recovery of up to 96.4% and cell losses below 5%, an effective processing rate >160,000 cells per second. A three-step protocol is shown to be effective for removal of 99.1% of RBCs spiked with 1% cancer cells while maintaining a processing rate of ∼170,000 cells per second. Furthermore, the self-contained and low-cost nature of the separator device means that it has potential application in low-contamination applications such as cell therapies, where good manufacturing practice compatibility is of paramount importance.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Elisabeth Karsten ◽  
Edmond Breen ◽  
Sharon A. McCracken ◽  
Stephen Clarke ◽  
Benjamin R. Herbert

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Eul Hyun Suh ◽  
Carlos F. G. C. Geraldes ◽  
Sara Chirayil ◽  
Brandon Faubert ◽  
Raul Ayala ◽  
...  

Abstract Background Excessive lactate production, a hallmark of cancer, is largely formed by the reduction of pyruvate via lactate dehydrogenase (LDH) to l-lactate. Although d-lactate can also be produced from glucose via the methylglyoxal pathway in small amounts, less is known about the amount of d-lactate produced in cancer cells. Since the stereoisomers of lactate cannot be distinguished by conventional 1H NMR spectroscopy, a chiral NMR shift reagent was used to fully resolve the 1H NMR resonances of d- and l-lactate. Methods The production of l-lactate from glucose and d-lactate from methylglyoxal was first demonstrated in freshly isolated red blood cells using the chiral NMR shift reagent, YbDO3A-trisamide. Then, two different cell lines with high GLO1 expression (H1648 and H 1395) were selected from a panel of over 80 well-characterized human NSCLC cell lines, grown to confluence in standard tissue culture media, washed with phosphate-buffered saline, and exposed to glucose in a buffer for 4 h. After 4 h, a small volume of extracellular fluid was collected and mixed with YbDO3A-trisamide for analysis by 1H NMR spectroscopy. Results A suspension of freshly isolated red blood cells exposed to 5mM glucose produced l-lactate as expected but very little d-lactate. To evaluate the utility of the chiral NMR shift reagent, methylglyoxal was then added to red cells along with glucose to stimulate the production of d-lactate via the glyoxalate pathway. In this case, both d-lactate and l-lactate were produced and their NMR chemical shifts assigned. NSCLC cell lines with different expression levels of GLO1 produced both l- and d-lactate after incubation with glucose and glutamine alone. A GLO1-deleted parental cell line (3553T3) showed no production of d-lactate from glucose while re-expression of GLO1 resulted in higher production of d-lactate. Conclusions The shift-reagent-aided NMR technique demonstrates that d-lactate is produced from glucose in NSCLC cells via the methylglyoxal pathway. The biological role of d-lactate is uncertain but a convenient method for monitoring d-lactate production could provide new insights into the biological roles of d- versus l-lactate in cancer metabolism.


Author(s):  
Kosuke Ueda ◽  
Hiroto Washida ◽  
Nakazo Watari

IntroductionHemoglobin crystals in the red blood cells were electronmicroscopically reported by Fawcett in the cat myocardium. In the human, Lessin revealed crystal-containing cells in the periphral blood of hemoglobin C disease patients. We found the hemoglobin crystals and its agglutination in the erythrocytes in the renal cortex of the human renal lithiasis, and these patients had no hematological abnormalities or other diseases out of the renal lithiasis. Hemoglobin crystals in the human erythrocytes were confirmed to be the first case in the kidney.Material and MethodsTen cases of the human renal biopsies were performed on the operations of the seven pyelolithotomies and three ureterolithotomies. The each specimens were primarily fixed in cacodylate buffered 3. 0% glutaraldehyde and post fixed in osmic acid, dehydrated in graded concentrations of ethanol, and then embedded in Epon 812. Ultrathin sections, cut on LKB microtome, were doubly stained with uranyl acetate and lead citrate.


Sign in / Sign up

Export Citation Format

Share Document