Determining the quasi-real-time change in the glass transition temperature of a thermoset resin under cure using fast scanning calorimetry

2019 ◽  
Vol 677 ◽  
pp. 79-84 ◽  
Author(s):  
Yoshitomo Furushima
Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 954
Author(s):  
Xavier Monnier ◽  
Sara Marina ◽  
Xabier Lopez de Pariza ◽  
Haritz Sardón ◽  
Jaime Martin ◽  
...  

The present work aims to provide insights on recent findings indicating the presence of multiple equilibration mechanisms in physical aging of glasses. To this aim, we have investigated a glass forming polyether, poly(1-4 cyclohexane di-methanol) (PCDM), by following the evolution of the enthalpic state during physical aging by fast scanning calorimetry (FSC). The main results of our study indicate that physical aging persists at temperatures way below the glass transition temperature and, in a narrow temperature range, is characterized by a two steps evolution of the enthalpic state. Altogether, our results indicate that the simple old-standing view of physical aging as triggered by the α relaxation does not hold true when aging is carried out deep in the glassy state.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Nurul Fatahah Asyqin Zainal ◽  
Jean Marc Saiter ◽  
Suhaila Idayu Abdul Halim ◽  
Romain Lucas ◽  
Chin Han Chan

AbstractWe present an overview for the basic fundamental of thermal analysis, which is applicable for educational purposes, especially for lecturers at the universities, who may refer to the articles as the references to “teach” or to “lecture” to final year project students or young researchers who are working on their postgraduate projects. Description of basic instrumentation [i.e. differential scanning calorimetry (DSC) and thermogravimetry (TGA)] covers from what we should know about the instrument, calibration, baseline and samples’ signal. We also provide the step-by-step guides for the estimation of the glass transition temperature after DSC as well as examples and exercises are included, which are applicable for teaching activities. Glass transition temperature is an important property for commercial application of a polymeric material, e.g. packaging, automotive, etc. TGA is also highlighted where the analysis gives important thermal degradation information of a material to avoid sample decomposition during the DSC measurement. The step-by-step guides of the estimation of the activation energy after TGA based on Hoffman’s Arrhenius-like relationship are also provided.


2006 ◽  
Vol 977 ◽  
Author(s):  
Rahmi Ozisik ◽  
Tong Liu ◽  
Richard W. Siegel

AbstractGlass transition temperature of polyetherimide (PEI) thin films and nanoporous PEI samples was investigated using differential scanning calorimetry. In both of these systems, the glass transition temperature decreased with respect to the bulk value. In the nanoporous system, scanning electron microscope images were used to characterize pore size distribution, and Monte Carlo simulations were performed to calculate the nearest neighbor pore-to-pore distances. Pore-to-pore distances and thin film thickness values were used to establish a quantitative analogy between thin films and nanoporous system.


2015 ◽  
Vol 59 (1) ◽  
pp. 109-118 ◽  
Author(s):  
Jolanta Tomaszewska-Gras ◽  
Sławomir Bakier ◽  
Kamila Goderska ◽  
Krzysztof Mansfeld

Abstract Thermodynamic properties of selected honeys: glass transition temperature (Tg), the change in specifi c heat capacity (ΔCp), and enthalpy (ΔH) were analysed using differential scanning calorimetry (DSC) in relation to the composition i.e. water and sugar content. Glass transition temperatures (Tg) of various types of honey differed significantly (p<0.05) and ranged from -49.7°C (polyfloral) to -34.8°C (sunflower). There was a strong correlation between the Tg values and the moisture content in honey (r = -0.94). The degree of crystallisation of the honey also influenced the Tg values. It has been shown that the presence or absence of sugar crystals influenced the glass transition temperature. For the decrystallised honeys, the Tg values were 6 to 11°C lower than for the crystallised honeys. The more crystallised a honey was, the greater the temperature difference was between the decrystallised and crystallized honey. In conclusion, to obtain reliable DSC results, it is crucial to measure the glass transition after the complete liquefaction of honey.


2007 ◽  
Vol 555 ◽  
pp. 497-502
Author(s):  
Dejan Miličević ◽  
S. Trifunović ◽  
N. Ignjatović ◽  
E. Suljovrujić

Hydroxyapatite/poly L-lactide (HAp/PLLA) is a composite biomaterial which has been widely utilized for substitution and reparation of the hard bone tissue. It is well known that gamma irradiation has been successfully employed in the modification/sterilization of such porous composites and that it has advantages over other procedures. In this study, differential scanning calorimetry (DSC) measurements were made to investigate the influence of the radiation on glass transition behavior and structural relaxation, as well as to estimate the activation energy for this process. The apparent activation energy ΔH* for structural relaxation in the glass transition region was determined on the basis of the heating rate dependence of the glass transition temperature Tg. Furthermore, the results were correlated with those obtained by gel permeation chromatography (GPC). Our findings support the fact that the radiation-induced chain scission in the PLLA phase is the main reason for the decrease of the glass transition temperature and/or activation energy with the absorbed dose.


Sign in / Sign up

Export Citation Format

Share Document