Thermal analysis combined with X-ray diffraction/Rietveld method, FT-IR and UV-vis spectroscopy: Structural characterization of the lanthanum and cerium (III) polycrystalline complexes

2020 ◽  
Vol 690 ◽  
pp. 178662
Author(s):  
K.V. Tenorio ◽  
A.B. Fortunato ◽  
J.M. Moreira ◽  
D. Roman ◽  
K.A. D’Oliveira ◽  
...  
Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1498 ◽  
Author(s):  
Abdul Hafeez ◽  
Zareen Akhter ◽  
John F. Gallagher ◽  
Nawazish Ali Khan ◽  
Asghari Gul ◽  
...  

Bis-aldehyde monomers 4-(4′-formyl-phenoxy)benzaldehyde (3a), 3-methoxy-4-(4′-formyl-phenoxy)benzaldehyde (3b), and 3-ethoxy-4-(4′-formyl-phenoxy)benzaldehyde (3c) were synthesized by etherification of 4-fluorobenzaldehyde (1) with 4-hydroxybenzaldehyde (2a), 3-methoxy-4-hydroxybenzaldehyde (2b), and 3-ethoxy-4-hydroxybenzaldehyde (2c), respectively. Each monomer was polymerized with p-phenylenediamine and 4,4′-diaminodiphenyl ether to yield six poly(azomethine)s. Single crystal X-ray diffraction structures of 3b and 3c were determined. The structural characterization of the monomers and poly(azomethine)s was performed by FT-IR and NMR spectroscopic techniques and elemental analysis. Physicochemical properties of polymers were investigated by powder X-ray diffraction, thermogravimetric analysis (TGA), viscometry, UV–vis, spectroscopy and photoluminescence. These polymers were subjected to electrical conductivity measurements by the four-probe method, and their conductivities were found to be in the range 4.0 × 10−5 to 6.4 × 10−5 Scm−1, which was significantly higher than the values reported so far.


2019 ◽  
Vol 37 (3) ◽  
pp. 304-309
Author(s):  
Azeezaa Varsha Mohammed ◽  
Suresh Sagadevan

AbstractL-cysteine hydrogen fluoride (LCHF) single crystals were grown from aqueous solution. Single crystal X-ray diffraction, FT-IR, UV-Vis-NIR, and TG-DTA were used to test the grown crystals. The specimen dielectric and mechanical behaviors were also studied. Powder X-ray diffraction of the grown crystal was recorded and indexed. The optical properties of the LCHF crystal were determined using UV-Vis spectroscopy. It was found that the optical band gap of LCHF was 4.8 eV. The crystal functional groups were identified using FT-IR. Second harmonic generation (SHG) efficiency of the LCHF was three times higher than that of KDP. The dielectric constant, dielectric loss and AC conductivity were measured at different frequencies and temperatures.


Author(s):  
Vânia Denise Schwade ◽  
Bárbara Tirloni

Pyrimidine-2-thione (HSpym) reacts with lead(II) thiocyanate and lead(II) bromide in N,N-dimethylformamide (DMF) to form poly[(μ-isothiocyanato-κ2 N:S)(μ4-pyrimidine-2-thiolato-κ6 N 1,S:S:S:S,N 3)lead(II)], [Pb(C4H3N2S)(NCS)] n or [Pb(Spym)(NCS)] n , (I), and the polymeric one-dimensional (1D) compound catena-poly[[μ4-bromido-di-μ-bromido-(μ-pyrimidine-2-thiolato-κ3 N 1,S:S)(μ-pyrimidine-2-thione-κ3 N 1,S:S)dilead(II)] N,N-dimethylformamide monosolvate], {[Pb2Br3(C4H3N2S)(C4H4N2S)]·C3H7NO} n or {[Pb2Br3(Spym)(HSpym)]·DMF} n , (IIa), respectively. Poly[μ4-bromido-di-μ3-bromido-(μ-pyrimidine-2-thiolato-κ3 N 1,S:S)(μ-pyrimidine-2-thione-κ3 N 1,S:S)dilead(II)], [Pb2Br3(C4H3N2S)(C4H4N2S)] n or [Pb2Br3(Spym)(HSpym)] n , (IIb), could be obtained as a mixture with (IIa) when using a lesser amount of solvent. In the crystal structures of the pseudohalide/halide PbII stable compounds, coordination of anionic and neutral HSpym has been observed. Both Spym− (in the thiolate tautomeric form) and NCS− ligands were responsible for the two-dimensional (2D) arrangement in (I). The Br− ligands establish the 1D polymeric arrangement in (IIa). Eight-coordinated metal centres have been observed in both compounds, when considering the Pb...S and Pb...Br interactions. Both compounds were characterized by FT–IR and diffuse reflectance spectroscopies, as well as by powder X-ray diffraction. Compound (IIa) and its desolvated version (IIb) represent the first structurally characterized PbII compounds containing neutral HSpym and anionic Spym− ligands. After a prolonged time in solution, (IIa) is converted to another compound due to complete deprotonation of HSpym. The structural characterization of (I) and (II) suggests HSpym as a good candidate for the removal of PbII ions from solutions containing thiocyanate or bromide ions.


2021 ◽  
Author(s):  
Faiza Lughmani ◽  
Farzana Nazir ◽  
Shahid Ali Khan ◽  
Mudassir Iqbal

Abstract In this study, microcrystalline cellulose (MCC) was modified to oxidized cellulose (OC), 6-deoxycellulose hydrazide and 6-deoxycellulose(N,N-diethyl)amine (MCC-Hyd and MCC-DEM) derivatives and employed as supporting material for the synthesis of copper nanoparticles (NPs). Copper ions from aqueous solution were adsorbed and then reduced to zero valent copper (ZVC) NPs using sodium borohydride on films of prepared derivatives. The characterization of prepared derivatives and Cu NPs embedded films was performed using Fourier Transform Infrared Spectroscopy (FT-IR), Elemental analysis, X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Nuclear Magnetic Resonance (NMR) spectroscopy. Ultraviolet/Visible (UV-VIS) spectroscopy was performed for the degradation studies of 4-nitrophenol (4-NP) and various azo dyes viz. Congo Red (CR), Methylene Blue (MB), and Methyl orange (MO). Results revealed that all the films showed degradation only in the presence of ZVC NPs. Oxidized cellulose, MCC-Hyd and MCC-DEM showed excellent degradation efficiencies (> 85%) in all the cases. Our findings revealed that MCC derivatives could be efficient and renewable candidates for removal of water pollutants in future.


2014 ◽  
Vol 809-810 ◽  
pp. 313-318
Author(s):  
Peng Cheng Song ◽  
Tong Jiang Peng ◽  
Hong Juan Sun ◽  
Yu Cao Yu

Fibri-form silica was extracted from short chrysotile fibers by mix-roasting with ammonium bisulfate. The fibri-form silica were characterized by X-ray fluorescence analysis (XRF), X-ray diffraction (XRD), thermogravimetry and differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR) and N2 adsorption isotherms. The results show that the fibri-form silica with disordered crystalline structure, but also in fibrous morphology. The surface area and pore volume of fibri-form silica are 181.66 m2/ g and 0.44 cc/ g, respectively. The structure of fibri-form silica is stable, no phase transformed from 50 to 1200 oC.


2014 ◽  
Vol 1072 ◽  
pp. 84-93 ◽  
Author(s):  
N. Ramesh Babu ◽  
S. Subashchandrabose ◽  
M. Syed Ali Padusha ◽  
H. Saleem ◽  
V. Manivannan ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1041
Author(s):  
Jesús Isaías De León Ramírez ◽  
Víctor Alfredo Reyes Villegas ◽  
Sergio Pérez Sicairos ◽  
Esteban Hernández Guevara ◽  
Mirna Del Carmen Brito Perea ◽  
...  

The contamination of both soil and water by nitrobenzene (NB) is a problem that has been studied, where several reactive agents have been developed for the degradation of this compound as well as different methods. Nanoparticles with semiconductive properties have been studied for organic compounds photodegradation due to their assistance in optimizing the degradation processes. Two of the most promising photocatalysts are ZnO and TiO2 because of their optimal results. In the present work the performance of the zinc peroxide (ZnO2) nanoparticles was evaluated. ZnO2 nanoparticles were synthesized from zinc acetate and hydrogen peroxide using the Sol-Gel method under ultrasound assistance. The characterization was carried out by UV–Vis spectroscopy, infrared Fourier transform total reflectance (ATR-FT-IR) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), Zeta potential, dynamic light scattering (DLS), field emission scanning electron microscopy (FE-SEM), and Energy Dispersive X-ray spectroscopy (EDX). The experiments for the degradation of NB were carried out in a photoreactor with UV lamps of 254 nm at 25 °C, using a solution of nitrobenzene with the nanoparticles. The best conditions for NB photodegradation were 30 ppm (ZnO2) and 15 ppm (NB) at pH 2, reaching up to 90% degradation in 2 h. The intermediates formed during the photodegradation of NB were identified by gas chromatography mass spectrometry.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1808-C1808 ◽  
Author(s):  
Kelly Lixandrão ◽  
Fabio Ferreira

Drugs may present polycrystalline polymorphism (property of a substance to crystallize in more than one form or crystal structure). These variations can cause changes in physical-chemical properties and differences between the polymorphs as shape, solubility, density, melting range, among other consequences, leading to formulations that are not effective, although the chemical formula is the same [1]. Drugs such as albendazole (C12H15N3O2S, which is one of the most effective anthelmintics, [2] showing activity against nematodes, trematodes and cestodes, reasons that added to its safety and low cost have made it a drug widely used in human medicine and veterinary), has more than two different crystal structures, and only two of them are known. The X-ray powder diffraction is a powerful technique used in the structural characterization of drugs, and coupled with the Rietveld method [4], the quantification of the active phases, through the knowledge of their crystal structures, becomes possible. In this paper we discuss results on the differences between the polymorphs of albendazole, with data obtained by means of X-ray diffraction, thermal analysis (differential scanning calorimetry and thermogravimetric analysis), Fourier transform infrared spectroscopy and scanning electron microscopy.


2012 ◽  
Vol 217-219 ◽  
pp. 733-736
Author(s):  
Xiu Mei Han ◽  
Shu Ai Hao ◽  
Ying Ling Wang ◽  
Gui Fang Sun ◽  
Xi Wei Qi

Zn2SiO4:Eu3+, Dy3+ phosphors have been prepared through the sol-gel process. X-ray diffraction (XRD), thermogravimetric and ddifferential thermal analysis (TG-DTA), FT-IR spectra and photoluminescence spectra were used to characterize the resulting phosphors. The results of XRD indicated that the phosphors crystallized completely at 1000oC. In Zn2SiO4:Eu3+,Dy3+ phosphors, the Eu3+ and Dy3+ show their characteristic red(613nm, 5D0-7F2), blue (481nm, 4F9/2–6H15/2) and yellow (577nm, 4F9/2–6H13/2) emissions.


Sign in / Sign up

Export Citation Format

Share Document