scholarly journals A hybrid recommendation model for successful R&D collaboration: Mixing machine learning and discriminant analysis

2021 ◽  
Vol 170 ◽  
pp. 120871
Author(s):  
Seung-Pyo Jun ◽  
Hyoung Sun Yoo ◽  
Jeena Hwang
2017 ◽  
Vol 27 (1) ◽  
pp. 169-180 ◽  
Author(s):  
Marton Szemenyei ◽  
Ferenc Vajda

Abstract Dimension reduction and feature selection are fundamental tools for machine learning and data mining. Most existing methods, however, assume that objects are represented by a single vectorial descriptor. In reality, some description methods assign unordered sets or graphs of vectors to a single object, where each vector is assumed to have the same number of dimensions, but is drawn from a different probability distribution. Moreover, some applications (such as pose estimation) may require the recognition of individual vectors (nodes) of an object. In such cases it is essential that the nodes within a single object remain distinguishable after dimension reduction. In this paper we propose new discriminant analysis methods that are able to satisfy two criteria at the same time: separating between classes and between the nodes of an object instance. We analyze and evaluate our methods on several different synthetic and real-world datasets.


Author(s):  
Angana Saikia ◽  
Vinayak Majhi ◽  
Masaraf Hussain ◽  
Sudip Paul ◽  
Amitava Datta

Tremor is an involuntary quivering movement or shake. Characteristically occurring at rest, the classic slow, rhythmic tremor of Parkinson's disease (PD) typically starts in one hand, foot, or leg and can eventually affect both sides of the body. The resting tremor of PD can also occur in the jaw, chin, mouth, or tongue. Loss of dopamine leads to the symptoms of Parkinson's disease and may include a tremor. For some people, a tremor might be the first symptom of PD. Various studies have proposed measurable technologies and the analysis of the characteristics of Parkinsonian tremors using different techniques. Various machine-learning algorithms such as a support vector machine (SVM) with three kernels, a discriminant analysis, a random forest, and a kNN algorithm are also used to classify and identify various kinds of tremors. This chapter focuses on an in-depth review on identification and classification of various Parkinsonian tremors using machine learning algorithms.


Author(s):  
S. R. Mani Sekhar ◽  
G. M. Siddesh

Machine learning is one of the important areas in the field of computer science. It helps to provide an optimized solution for the real-world problems by using past knowledge or previous experience data. There are different types of machine learning algorithms present in computer science. This chapter provides the overview of some selected machine learning algorithms such as linear regression, linear discriminant analysis, support vector machine, naive Bayes classifier, neural networks, and decision trees. Each of these methods is illustrated in detail with an example and R code, which in turn assists the reader to generate their own solutions for the given problems.


2016 ◽  
Vol 67 (1) ◽  
pp. 59 ◽  
Author(s):  
Prabhat Kumar Ray ◽  
Shrikant Ojha ◽  
Bimal Kumar Roy ◽  
Ayanendranath Basu

<p>Fisher’s Discriminant Analysis (FDA) is a method used in statistics and machine learning which can often lead to good classification between several populations by maximizing the separation between the populations. We will present some applications of FDA that discriminate between cipher texts in terms of a finite set of encryption algorithms. Specifically, we use ten algorithms, five each of stream and block cipher types. Our results display good classification with some of the features. In the present case we have little in terms of an existing standard; however, our limited study clearly shows that further exploration of this issue could be worthwhile.</p>


2020 ◽  
Author(s):  
A Pozzi ◽  
C Raffone ◽  
MG Belcastro ◽  
TL Camilleri-Carter

ABSTRACTObjectivesUsing cranial measurements in two Italian populations, we compare machine learning methods to the more traditional method of linear discriminant analysis in estimating sex. We use crania in sex estimation because it is useful especially when remains are fragmented or displaced, and the cranium may be the only remains found.Materials and MethodsUsing the machine learning methods of decision tree learning, support-vector machines, k-nearest neighbor algorithm, and ensemble methods we estimate the sex of two populations: Samples from Bologna and samples from the island of Sardinia. We used two datasets, one containing 17 cranial measurements, and one measuring the foramen magnum.Results and DiscussionOur results indicate that machine learning models produce similar results to linear discriminant analysis, but in some cases machine learning produces more consistent accuracy between the sexes. Our study shows that sex can be accurately predicted (> 80%) in Italian populations using the cranial measurements we gathered, except for the foramen magnum, which shows a level of accuracy of ∼70% accurate which is on par with previous geometric morphometrics studies using crania in sex estimation. We also find that our trained machine learning models produce population-specific results; we see that Italian crania are sexually dimorphic, but the features that are important to this dimorphism differ between the populations.


2021 ◽  
Author(s):  
Chen Ma ◽  
Ludi Zhang ◽  
Ting He ◽  
Huiying Cao ◽  
Chenhui Ma ◽  
...  

Abstract Background: Cell therapy provides hope for treatment of advanced liver failure. Proliferating human hepatocytes (ProliHHs) were derived from primary human hepatocytes (PHH) and as potential alternative for cell therapy in liver diseases. Due to the continuous decline of mature hepatic genes and increase of progenitor like genes during ProliHHs expanding, it is challenge to monitor the critical changes of the whole process. Raman microspectroscopy is a noninvasive, label free analytical technique with high sensitivity capacity. In this study, we evaluated the potential and feasibility to identify ProliHHs from PHH with Raman spectroscopy.Methods: Raman spectra were collected at least 600 single spectrum for PHH and ProliHHs at different stages (Passage 1 to Passage 4). Linear discriminant analysis and a two-layer machine learning model were used to analyze the Raman spectroscopy data. Significant differences in Raman bands were validated by the associated conventional kits.Results: Linear discriminant analysis successfully classified ProliHHs at different stages and PHH. A two-layer machine learning model was established and the overall accuracy was at 84.6%. Significant differences in Raman bands have been found within different ProliHHs cell groups, especially changes at 1003 cm-1, 1206 cm-1 and 1300 cm-1. These changes were linked with reactive oxygen species, hydroxyproline and triglyceride levels in ProliHHs, and the hypothesis were consistent with the corresponding assay results. Conclusions: In brief, Raman spectroscopy was successfully employed to identify different stages of ProliHHs during dedifferentiation process. The approach can simultaneously trace multiple changes of cellular components from somatic cells to progenitor cells.


Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2133
Author(s):  
Rong Wang ◽  
Aparna Naidu ◽  
Yong Wang

The Fourier transform infrared (FTIR) imaging technique was used in a transmission model for the evaluation of twelve oral hyperkeratosis (HK), eleven oral epithelial dysplasia (OED), and eleven oral squamous cell carcinoma (OSCC) biopsy samples in the fingerprint region of 1800–950 cm−1. A series of 100 µm × 100 µm FTIR imaging areas were defined in each sample section in reference to the hematoxylin and eosin staining image of an adjacent section of the same sample. After outlier removal, signal preprocessing, and cluster analysis, a representative spectrum was generated for only the epithelial tissue in each area. Two representative spectra were selected from each sample to reflect intra-sample heterogeneity, which resulted in a total of 68 representative spectra from 34 samples for further analysis. Exploratory analyses using Principal component analysis and hierarchical cluster analysis showed good separation between the HK and OSCC spectra and overlaps of OED spectra with either HK or OSCC spectra. Three machine learning discriminant models based on partial least squares discriminant analysis (PLSDA), support vector machines discriminant analysis (SVMDA), and extreme gradient boosting discriminant analysis (XGBDA) were trained using 46 representative spectra from 12 HK and 11 OSCC samples. The PLSDA model achieved 100% sensitivity and 100% specificity, while both SVM and XGBDA models generated 95% sensitivity and 96% specificity, respectively. The PLSDA discriminant model was further used to classify the 11 OED samples into HK-grade (6), OSCC-grade (4), or borderline case (1) based on their FTIR spectral similarity to either HK or OSCC cases, providing a potential risk stratification strategy for the precancerous OED samples. The results of the current study support the application of the FTIR-machine learning technique in early oral cancer detection.


Sign in / Sign up

Export Citation Format

Share Document