The role of dewatering in the progressive deformation of a sandy accretionary wedge: constraints from direct imagings of fluid flow and void structure

2005 ◽  
Vol 397 (3-4) ◽  
pp. 261-280 ◽  
Author(s):  
Tetsuro Hirono
1956 ◽  
Vol 184 (2) ◽  
pp. 296-300 ◽  
Author(s):  
László Kátó ◽  
Béla Gözsy

Experiments are presented to the effect that in an inflammatory process histamine and leucotaxin appear successively at different and orderly time intervals, thus assuring an increased fluid flow through the capillary wall. Histamine is released not only in the inflammatory process but also by intradermal administration of such substances (volatile oils or their components) which induce neither the triple response of Th. Lewis nor any tissue damage. This could be explained by the fact that in the tissues histamine is ‘present’ but leucotaxin is ‘formed.’


1999 ◽  
Vol 266 (1-4) ◽  
pp. 420-424 ◽  
Author(s):  
U.M.S. Costa ◽  
J.S.Andrade Jr. ◽  
H.A. Makse ◽  
H.E. Stanley

1981 ◽  
Vol 9 ◽  
Author(s):  
D.C. Miller

ABSTRACTIn the Czochralski growth of single crystals from large melts, fluid flow phenomena have a major effect on interface shape, growth striations, defect density and the length of crystals which can be grown from a melt of given volume and thermal geometry. Because of the technical difficulties encountered in making direct measurements in molten oxides, simulation experiments have been extensively utilized to gain insight into melt behavior.Both temperature profile and flow geometry results from simulation experiments are discussed. This data is supported by direct melt observations and results from the characterization of grown crystals. When reviewed together, this information offers new insights into the complex behavior of Czochralski growth processes, including the role of thermal gradients, crystal rotation, and surface tension driven (Marangoni) convection.


Author(s):  
Gaffar Gailani ◽  
Mohammed Benalla ◽  
Rashal Mahamud ◽  
Stephen Cowin ◽  
Luis Cardoso

Determining the poroelastic properties of osteons is critical to better understand the role of fluid flow in the nutrition, mechanotransduction, remodeling, homeostasis and loss of bone. The permeability of single osteons is among the key properties that may influence these phenomena. The measurement of permeability of a single osteon remains one of the most demanding tasks in bone mechanics to be developed. Two associated challenges are the size of the osteon and the absence of appropriate tools and methods to perform such measurement. In this communication, we present the development of a new procedure to isolate osteons, the design of a mechanism for loading an osteon and the comparison of the stress relaxation test in unconfined compression experiment with the analytical results for a compressible transverse isotropy model that we previously reported in Gailani and Cowin [1]. These experimentally determined values of permeability and mechanical properties have shown reasonable agreement with the previously reported experimentally and theoretically estimated values.


2019 ◽  
Vol 48 (8) ◽  
pp. 3986-3999 ◽  
Author(s):  
B. Ammani Kuttan ◽  
S. Manjunatha ◽  
S. Jayanthi ◽  
B. J. Gireesha

Micromachines ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 451 ◽  
Author(s):  
Ehsan Akbari ◽  
Griffin B. Spychalski ◽  
Kaushik K. Rangharajan ◽  
Shaurya Prakash ◽  
Jonathan W. Song

Sprouting angiogenesis—the infiltration and extension of endothelial cells from pre-existing blood vessels—helps orchestrate vascular growth and remodeling. It is now agreed that fluid forces, such as laminar shear stress due to unidirectional flow in straight vessel segments, are important regulators of angiogenesis. However, regulation of angiogenesis by the different flow dynamics that arise due to vessel branching, such as impinging flow stagnation at the base of a bifurcating vessel, are not well understood. Here we used a recently developed 3-D microfluidic model to investigate the role of the flow conditions that occur due to vessel bifurcations on endothelial sprouting. We observed that bifurcating fluid flow located at the vessel bifurcation point suppresses the formation of angiogenic sprouts. Similarly, laminar shear stress at a magnitude of ~3 dyn/cm2 applied in the branched vessels downstream of the bifurcation point, inhibited the formation of angiogenic sprouts. In contrast, co-application of ~1 µm/s average transvascular flow across the endothelial monolayer with laminar shear stress induced the formation of angiogenic sprouts. These results suggest that transvascular flow imparts a competing effect against bifurcating fluid flow and laminar shear stress in regulating endothelial sprouting. To our knowledge, these findings are the first report on the stabilizing role of bifurcating fluid flow on endothelial sprouting. These results also demonstrate the importance of local flow dynamics due to branched vessel geometry in determining the location of sprouting angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document