Can sub-slab low-velocity anomalies be an artifact caused by anisotropy? A case study from the Alboran slab area in the western Mediterranean

2021 ◽  
Vol 819 ◽  
pp. 229080
Author(s):  
Hwaju Lee ◽  
Maximiliano J. Bezada ◽  
Manuele Faccenda
2003 ◽  
Vol 67 (S1) ◽  
pp. 337-351 ◽  
Author(s):  
J. Lleonart ◽  
F. Maynou ◽  
L. Recasens ◽  
R. Franquesa

2017 ◽  
Vol 193 ◽  
pp. 81-94 ◽  
Author(s):  
Martina F. Marongiu ◽  
Cristina Porcu ◽  
Andrea Bellodi ◽  
Rita Cannas ◽  
Alessandro Cau ◽  
...  

2020 ◽  
Vol 12 (18) ◽  
pp. 2975
Author(s):  
Huiyan Shi ◽  
Tonglin Li ◽  
Rongzhe Zhang ◽  
Gongcheng Zhang ◽  
Hetian Yang

It is of great significance to construct a three-dimensional underground velocity model for the study of geodynamics and tectonic evolution. Southeast Asia has attracted much attention due to its complex structural features. In this paper, we collected relative travel time residuals data for 394 stations distributed in Southeast Asia from 2006 to 2019, and 14,011 seismic events were obtained. Then, teleseismic tomography was applied by using relative travel time residuals data to invert the velocity where the fast marching method (FMM) and subspace method were used for every iteration. A novel 3D P-wave velocity model beneath Southeast Asia down to 720 km was obtained using this approach. The tomographic results suggest that the southeastern Tibetan Plateau, the Philippines, Sumatra, and Java, and the deep part of Borneo exhibit high velocity anomalies, while low velocity anomalies were found in the deep part of the South China Sea (SCS) basin and in the shallow part of Borneo and areas near the subduction zone. High velocity anomalies can be correlated to subduction plates and stable land masses, while low velocity anomalies can be correlated to island arcs and upwelling of mantle material caused by subduction plates. We found a southward subducting high velocity body in the Nansha Trough, which was presumed to be a remnant of the subduction of the Dangerous Grounds into Borneo. It is further inferred that the Nansha Trough and the Dangerous Grounds belong to the same tectonic unit. According to the tomographic images, a high velocity body is located in the deep underground of Indochina–Natuna Island–Borneo–Palawan, depth range from 240 km to 660 km. The location of the high velocity body is consistent with the distribution range of the ophiolite belt, so we speculate that the high velocity body is the remnant of thee Proto-South China Sea (PSCS) and Paleo-Tethys. This paper conjectures that the PSCS was the southern branch of Paleo-Tethys and the gateway between Paleo-Tethys and the Paleo-Pacific Ocean. Due to the squeeze of the Australian plate, PSCS closed from west to east in a scissor style, and was eventually extinct under Borneo.


2008 ◽  
Vol 23 (4) ◽  
pp. 569-589 ◽  
Author(s):  
Maria Rita Palombo ◽  
Maria Teresa Alberdi ◽  
Beatriz Azanza ◽  
Caterina Giovinazzo ◽  
José Luis Prado ◽  
...  

2020 ◽  
Vol 221 (1) ◽  
pp. 178-204 ◽  
Author(s):  
N L Celli ◽  
S Lebedev ◽  
A J Schaeffer ◽  
M Ravenna ◽  
C Gaina

SUMMARY We present a tomographic model of the crust, upper mantle and transition zone beneath the South Atlantic, South America and Africa. Taking advantage of the recent growth in broadband data sampling, we compute the model using waveform fits of over 1.2 million vertical-component seismograms, obtained with the automated multimode inversion of surface, S and multiple S waves. Each waveform provides a set of linear equations constraining perturbations with respect to a 3-D reference model within an approximate sensitivity volume. We then combine all equations into a large linear system and solve it for a 3-D model of S- and P-wave speeds and azimuthal anisotropy within the crust, upper mantle and uppermost lower mantle. In South America and Africa, our new model SA2019 reveals detailed structure of the lithosphere, with structure of the cratons within the continents much more complex than seen previously. In South America, lower seismic velocities underneath the transbrasilian lineament (TBL) separate the high-velocity anomalies beneath the Amazon Craton from those beneath the São Francisco and Paraná Cratons. We image the buried portions of the Amazon Craton, the thick cratonic lithosphere of the Paraná and Parnaíba Basins and an apparently cratonic block wedged between western Guyana and the slab to the west of it, unexposed at the surface. Thick cratonic lithosphere is absent under the Archean crust of the São Luis, Luis Álves and Rio de La Plata Cratons, next to the continental margin. The Guyana Highlands are underlain by low velocities, indicating hot asthenosphere. In the transition zone, we map the subduction of the Nazca Plate and the Chile Rise under Patagonia. Cratonic lithosphere beneath Africa is more fragmented than seen previously, with separate cratonic units observed within the West African and Congo Cratons, and with cratonic lithosphere absent beneath large portions of Archean crust. We image the lateral extent of the Niassa Craton, hypothesized previously and identify a new unit, the Cubango Craton, near the southeast boundary of the grater Congo Craton, with both of these smaller cratons unexposed at the surface. In the South Atlantic, the model reveals the patterns of interaction between the Mid-Atlantic Ridge (MAR) and the nearby hotspots. Low-velocity anomalies beneath major hotspots extend substantially deeper than those beneath the MAR. The Vema Hotspot, in particular, displays a pronounced low-velocity anomaly under the thick, high-velocity lithosphere of the Cape Basin. A strong low velocity anomaly also underlies the Cameroon Volcanic Line and its offshore extension, between Africa and the MAR. Subtracting the global, age-dependent VS averages from those in the South Atlantic Basins, we observe areas where the cooling lithosphere is locally hotter than average, corresponding to the location of the Tristan da Cunha, Vema and Trindade hotspots. Beneath the anomalously deep Argentine Basin, we image unusually thick, high-velocity lithosphere, which suggests that its anomalously great depth can be explained, at least to a large extent, by isostatic, negative lithospheric buoyancy.


Geophysics ◽  
1985 ◽  
Vol 50 (1) ◽  
pp. 37-48 ◽  
Author(s):  
Ross Alan Ensley

Shear waves differ from compressional waves in that their velocity is not significantly affected by changes in the fluid content of a rock. Because of this relationship, a gas‐related compressional‐wave “bright spot” or direct hydrocarbon indicator will have no comparable shear‐wave anomaly. In contrast, a lithology‐related compressional‐wave anomaly will have a corresponding shear‐wave anomaly. Thus, it is possible to use shear‐wave seismic data to evaluate compressional‐wave direct hydrocarbon indicators. This case study presents data from Myrnam, Alberta which exhibit the relationship between compressional‐ and shear‐wave seismic data over a gas reservoir and a low‐velocity coal.


Geophysics ◽  
1997 ◽  
Vol 62 (6) ◽  
pp. 1758-1773 ◽  
Author(s):  
Don W. Vasco ◽  
John E. Peterson ◽  
Ki Ha Lee

A ray series solution for Maxwell's equations provides an efficient numerical technique for calculating wavefronts and raypaths associated with electromagnetic waves in anisotropic media. Using this methodology and assuming weak anisotropy, we show that a perturbation of the anisotropic structure may be related linearly to a variation in the traveltime of an electromagnetic wave. Thus, it is possible to infer lateral variations in the dielectric permittivity and magnetic permeability matrices. The perturbation approach is used to analyze a series of crosswell ground‐penetrating radar surveys conducted at the Idaho National Engineering Laboratory. Several important geological features are imaged, including a rubble zone at the interface between two basalt flows. Linear low‐velocity anomalies are imaged clearly and are continuous across well pairs.


Sign in / Sign up

Export Citation Format

Share Document