Chemical mechanism of petal color development of Nemophila menziesii by a metalloanthocyanin, nemophilin

Tetrahedron ◽  
2015 ◽  
Vol 71 (48) ◽  
pp. 9123-9130 ◽  
Author(s):  
Kumi Yoshida ◽  
Kensuke Tojo ◽  
Mihoko Mori ◽  
Keiko Yamashita ◽  
Sayoko Kitahara ◽  
...  
1989 ◽  
Vol 58 (3) ◽  
pp. 575-580 ◽  
Author(s):  
Toshihiko TAKAGI ◽  
Yukinao MASUDA ◽  
Tomoko OHNISHI ◽  
Tetsuo SUZUKI

2019 ◽  
Vol 26 (38) ◽  
pp. 6878-6895 ◽  
Author(s):  
Anna Jabłońska ◽  
Aleksandra Jaworska ◽  
Mateusz Kasztelan ◽  
Sylwia Berbeć ◽  
Barbara Pałys

: Surface Enhanced Raman Spectroscopy (SERS) has a long history as an ultrasensitive platform for the detection of biological species from small aromatic molecules to complex biological systems as circulating tumor cells. Thanks to unique properties of graphene, the range of SERS applications has largely expanded. Graphene is efficient fluorescence quencher improving quality of Raman spectra. It contributes also to the SERS enhancement factor through the chemical mechanism. In turn, the chemical flexibility of Reduced Graphene Oxide (RGO) enables tunable adsorption of molecules or cells on SERS active surfaces. Graphene oxide composites with SERS active nanoparticles have been also applied for Raman imaging of cells. This review presents a survey of SERS assays employing graphene or RGO emphasizing the improvement of SERS enhancement brought by graphene or RGO. The structure and physical properties of graphene and RGO will be discussed too.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Ayari Takamura ◽  
Daisuke Watanabe ◽  
Rintaro Shimada ◽  
Takeaki Ozawa

Abstract Blood, as a cardinal biological system, is a challenging target for biochemical characterization because of sample complexity and a lack of analytical approaches. To reveal and evaluate aging process of blood compositions is an unexplored issue in forensic analysis, which is useful to elucidate the details of a crime. Here we demonstrate a spectral deconvolution model of near-infrared Raman spectra of bloodstain to comprehensively describe the aging process based on the chemical mechanism, particularly the kinetics. The bloodstain spectra monitored over several months at different temperatures are decomposed into significant spectral components by multivariate calculation. The kinetic schemes of the spectral components are explored and subsequently incorporated into the developed algorithm for the optimal spectral resolution. Consequently, the index of bloodstain aging is proposed, which can be used under different experimental conditions. This work provides a novel perspective on the chemical mechanisms in bloodstain aging and facilitates forensic applications.


Author(s):  
George W. Luther III ◽  
Jennifer S. Karolewski ◽  
Kevin M. Sutherland ◽  
Colleen M. Hansel ◽  
Scott D. Wankel

Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 113
Author(s):  
Xueqiang Cui ◽  
Jieling Deng ◽  
Changyan Huang ◽  
Xuan Tang ◽  
Xianmin Li ◽  
...  

Dendrobium nestor is a famous orchid species in the Orchidaceae family. There is a diversity of flower colorations in the Dendrobium species, but knowledge of the genes involved and molecular mechanism underlying the flower color formation in D. nestor is less studied. Therefore, we performed transcriptome profiling using Illumina sequencing to facilitate thorough studies of the purple color formation in petal samples collected at three developmental stages, namely—flower bud stage (F), half bloom stage (H), and full bloom stage (B) in D. nestor. In addition, we identified key genes and their biosynthetic pathways as well as the transcription factors (TFs) associated with purple flower color formation. We found that the phenylpropanoid–flavonoid–anthocyanin biosynthesis genes such as phenylalanine ammonia lyase, chalcone synthase, anthocyanidin synthase, and UDP-flavonoid glucosyl transferase, were largely up-regulated in the H and B samples as compared to the F samples. This upregulation might partly account for the accumulation of anthocyanins, which confer the purple coloration in these samples. We further identified several differentially expressed genes related to phytohormones such as auxin, ethylene, cytokinins, salicylic acid, brassinosteroid, and abscisic acid, as well as TFs such as MYB and bHLH, which might play important roles in color formation in D. nestor flower. Sturdy upregulation of anthocyanin biosynthetic structural genes might be a potential regulatory mechanism in purple color formation in D. nestor flowers. Several TFs were predicted to regulate the anthocyanin genes through a K-mean clustering analysis. Our study provides valuable resource for future studies to expand our understanding of flower color development mechanisms in D. nestor.


1969 ◽  
Vol 52 (3) ◽  
pp. 438-441
Author(s):  
Glenn M George ◽  
A C Daftsios ◽  
Joseph L Morrison

Abstract The coccidiostat aklomide is extracted from feed with methanol and assayed colorimetrically by reduction of the nitro group to anamine with titanium trichloride and subsequent color development with t he Bratton-Marshall reaction. Thirteen laboratories studied the method collaboratively on two levels of medicated feed. Overall average recovery was 106.5% of the oretical for the low level and 104.5% of the oretical for the high level. The method is recommended for adoption as official first action


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Chenyu Lin ◽  
Sai Krishna Katla ◽  
Juan Pérez-Mercader

AbstractAutonomous and out-of-equilibrium vesicles synthesised from small molecules in a homogeneous aqueous medium are an emerging class of dynamically self-assembled systems with considerable potential for engineering natural life mimics. Here we report on the physico-chemical mechanism behind a dynamic morphological evolution process through which self-assembled polymeric structures autonomously booted from a homogeneous mixture, evolve from micelles to giant vesicles accompanied by periodic growth and implosion cycles when exposed to oxygen under light irradiation. The system however formed nano-objects or gelation under poor oxygen conditions or when heated. We determined the cause to be photoinduced chemical degradation within hydrated polymer cores inducing osmotic water influx and the subsequent morphological dynamics. The process also led to an increase in the population of polymeric objects through system self-replication. This study offers a new path toward the design of chemically self-assembled systems and their potential application in autonomous material artificial simulation of living systems.


1986 ◽  
Vol 66 (2) ◽  
pp. 377-381 ◽  
Author(s):  
P. A. SCHUPPLI

Soils were extracted by hot water, dilute CaCl2, and by mannitol-CaCl2 solutions and boron was determined by either azomethine-H or the curcumin method. Results were strongly method dependent; in particular results by the simplest method, mannitol-CaCl2, were generally lower and not highly correlated (r = 0.64) with those by the recommended procedure. This procedure involves extraction with hot distilled H2O (2:1 solution:soil), centrifugation, filtration, color development with azomethine-H and correction for background color. Extractable boron values by this procedure ranged from 0.1 to 1.4 mg kg−1. Background color can be further reduced by the substitution of 0.02 M CaCl2 for distilled water. Key words: CSSC reference soil samples, hot-water-soluble boron


Sign in / Sign up

Export Citation Format

Share Document