scholarly journals Comprehensive modeling of bloodstain aging by multivariate Raman spectral resolution with kinetics

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Ayari Takamura ◽  
Daisuke Watanabe ◽  
Rintaro Shimada ◽  
Takeaki Ozawa

Abstract Blood, as a cardinal biological system, is a challenging target for biochemical characterization because of sample complexity and a lack of analytical approaches. To reveal and evaluate aging process of blood compositions is an unexplored issue in forensic analysis, which is useful to elucidate the details of a crime. Here we demonstrate a spectral deconvolution model of near-infrared Raman spectra of bloodstain to comprehensively describe the aging process based on the chemical mechanism, particularly the kinetics. The bloodstain spectra monitored over several months at different temperatures are decomposed into significant spectral components by multivariate calculation. The kinetic schemes of the spectral components are explored and subsequently incorporated into the developed algorithm for the optimal spectral resolution. Consequently, the index of bloodstain aging is proposed, which can be used under different experimental conditions. This work provides a novel perspective on the chemical mechanisms in bloodstain aging and facilitates forensic applications.

Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2925 ◽  
Author(s):  
Arianna Ricci ◽  
Giuseppina Paola Parpinello ◽  
Nemanja Teslić ◽  
Paul Andrew Kilmartin ◽  
Andrea Versari

Twenty commercially available oenological tannins (including hydrolysable and condensed) were assessed for their antiradical/reducing activity, comparing two analytical approaches: The 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging spectrophotometric assay and the cyclic voltammetry (CV) electrochemical method. Electrochemical measurements were performed over a −200 mV–500 mV scan range, and integrated anodic currents to 500 mV were used to build a calibration graph with (+)-catechin as a reference standard (linear range: From 0.0078 to 1 mM, R2 = 0.9887). The CV results were compared with the DPPH• assay (expressed as % of radical scavenged in time), showing high correlation due to the similarity of the chemical mechanisms underlying both methods involving polyphenolic compounds as reductants. Improved correlation was observed by increasing the incubation time with DPPH• to 24 h (R2 = 0.925), demonstrating that the spectrophotometric method requires a long-term incubation to complete the scavenging reaction when high-molecular weight tannins are involved; this constraint has been overcome by using instant CV measurements. We concluded that the CV represents a valid alternative to the DPPH• colorimetric assay, taking advantage of fast analysis and control on the experimental conditions and, because of these properties, it can assist the quality control along the supply chain.


2020 ◽  
Vol 11 (1) ◽  
pp. 124
Author(s):  
Haibin Geng ◽  
Hanzhe Ye ◽  
Xingliang Chen ◽  
Sibin Du

This paper aims to clarify the phase composition in each sub-layer of tandem absorber TiMoAlON film and verify its thermal stability. The deposited multilayer Ti/(Mo-TiAlN)/(Mo-TiAlON)/Al2O3 films include an infrared reflectance layer, light interference absorptive layers with different metal doping amounts, and an anti-reflectance layer. The layer thicknesses of Ti, Mo-TiAlN, Mo-TiAlON, and Al2O3 are 100, 300, 200, and 80 nm, respectively. Al content increases to 12 at.% and the ratio of N/O is nearly 0.1, which means nitride continuously changes to oxide. According to X-ray Diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) results, the diffraction peak that appears at 2θ = 40° demonstrates that Mo element aggregates in the substitutional solid solution (Ti,Al)(O,N) columnar grain. TiMoAlON films have low reflectivity in the spectrum range of 300–900 nm. When Al content is more than 10 at.%, absorptivity is almost in the spectrum range from visible to infrared, but absorptivity decreases in the ultraviolet spectrum range. When Al content is increased to 12 at.%, absorptivity α decreases by 0.05 in the experimental conditions. After baking in atmosphere at 500 °C for 8 h, the film has the highest absorptivity when doped with 2 at.% Mo. In the visible-light range, α = 0.97, and in the whole ultraviolet-visible-light near-infrared spectrum range, α = 0.94, and emissivity ε = 0.02 at room temperature and ε = 0.10 at 500 °C.


2015 ◽  
Vol 24 (3) ◽  
pp. 350-356 ◽  
Author(s):  
Giovanni Lemos de Mello ◽  
Gabriela Tomas Jerônimo ◽  
Karen Roberta Tancredo ◽  
Jéssica Brol ◽  
Evelyn Jacques de Almeida ◽  
...  

This study evaluated the correlation of hematological parameters with the mean abundance of the monogenean helminth Rhabdosynochus rhabdosynochus in Centropomus undecimalis reared at different temperatures and salinities. The experimental conditions were: 28 °C/0 ppt (parts per thousand); 28 °C/15 ppt; 28 °C/32 ppt; 25 °C/0 ppt; 25 °C/15 ppt; and 25 °C/32 ppt. The prevalence was 100.0% in fish at 28 °C/15 ppt, 28 °C/32 ppt and 25 °C/15 ppt, which was significantly different (p < 0.05) from those at 25 °C/32 ppt. The red blood cell (RBC) count, hematocrit and total leukocyte (WBC) count were significantly higher in fish at 28 °C/15 ppt and 28 °C/32 ppt. The mean abundance of R. rhabdosynochus, hematocrit and RBC showed positive correlations (P < 0.05) with temperature (ρ= 0.3908; ρ= 0.4771 and ρ = 0.2812). Mean abundance showed negative correlations with hemoglobin (ρ= -0.3567) and mean corpuscular hemoglobin concentration (MCHC) (ρ = -0.2684). No correlation between abundance and salinity was detected among the experimental conditions (ρ = -0.0204). The low numbers of monogeneans recorded (min -1 and max -33) explain the few changes to fish health. This suggests that these experimental conditions may be recommended for development of rearing of C. undecimalis in Brazil, without any influence or economic losses from R. rhabdosynochus.


Environments ◽  
2018 ◽  
Vol 5 (11) ◽  
pp. 123 ◽  
Author(s):  
Leandro de Araujo ◽  
Júlio Marumo

One of the most common treatment methods for spent ion exchange resins is their immobilization in cement, which reduces the release of radionuclides into the environment. Although this method is efficient, it considerably increases the final volume of the waste due to its low incorporation capacity. This work aims to evaluate the degradation of ion exchange resins by the Fenton process (H2O2/Fe2+). The resin evaluated was a mixture of cationic and anionic resins, both non-radioactive. The reactions were conducted by varying the catalyst concentration (25, 50, 100, and 150 mmol L−1) and the volume of hydrogen peroxide. Three different temperatures were evaluated by varying the flow of reactants, which were 50, 60, and 70 °C. Cement specimens were prepared from the treated solutions and two parameters were assessed—namely, final setting time and axial compressive strength. The results showed that the experimental conditions were suitable to dissolve the resins, and the Fe3+ produced as precipitate during the experiments increased the resistance of the final product. The immobilized product complied with the limits established by regulation.


2020 ◽  
Vol 20 (16) ◽  
pp. 9783-9803
Author(s):  
Archit Mehra ◽  
Yuwei Wang ◽  
Jordan E. Krechmer ◽  
Andrew Lambe ◽  
Francesca Majluf ◽  
...  

Abstract. Aromatic volatile organic compounds (VOCs) are key anthropogenic pollutants emitted to the atmosphere and are important for both ozone and secondary organic aerosol (SOA) formation in urban areas. Recent studies have indicated that aromatic hydrocarbons may follow previously unknown oxidation chemistry pathways, including autoxidation that can lead to the formation of highly oxidised products. In this study we evaluate the gas- and particle-phase ions measured by online mass spectrometry during the hydroxyl radical oxidation of substituted C9-aromatic isomers (1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, propylbenzene and isopropylbenzene) and a substituted polyaromatic hydrocarbon (1-methylnaphthalene) under low- and medium-NOx conditions. A time-of-flight chemical ionisation mass spectrometer (ToF-CIMS) with iodide–anion ionisation was used with a filter inlet for gases and aerosols (FIGAERO) for the detection of products in the particle phase, while a Vocus proton-transfer-reaction mass spectrometer (Vocus-PTR-MS) was used for the detection of products in the gas phase. The signal of product ions observed in the mass spectra were compared for the different precursors and experimental conditions. The majority of mass spectral product signal in both the gas and particle phases comes from ions which are common to all precursors, though signal distributions are distinct for different VOCs. Gas- and particle-phase composition are distinct from one another. Ions corresponding to products contained in the near-explicit gas phase Master Chemical Mechanism (MCM version 3.3.1) are utilised as a benchmark of current scientific understanding, and a comparison of these with observations shows that the MCM is missing a range of highly oxidised products from its mechanism. In the particle phase, the bulk of the product signal from all precursors comes from ring scission ions, a large proportion of which are more oxidised than previously reported and have undergone further oxidation to form highly oxygenated organic molecules (HOMs). Under the perturbation of OH oxidation with increased NOx, the contribution of HOM-ion signals to the particle-phase signal remains elevated for more substituted aromatic precursors. Up to 43 % of product signal comes from ring-retaining ions including HOMs; this is most important for the more substituted aromatics. Unique products are a minor component in these systems, and many of the dominant ions have ion formulae concurrent with other systems, highlighting the challenges in utilising marker ions for SOA.


2016 ◽  
Vol 43 (4) ◽  
pp. 0414004
Author(s):  
张与鹏 Zhang Yupeng ◽  
刘东 Liu Dong ◽  
杨甬英 Yang Yongying ◽  
罗敬 Luo Jing ◽  
成中涛 Cheng Zhongtao ◽  
...  

2018 ◽  
Vol 10 (1) ◽  
pp. 532-543 ◽  
Author(s):  
Min Yang ◽  
Lei Kang ◽  
Huaqing Chen ◽  
Min Zhou ◽  
Jianghua Zhang

Abstract The East Tianshan Mountain is one of the most important gold ore forming zones in northwestern China and central Asia. The Chinese GaoFen-1 (GF-1), the first Chinese high resolution satellite, is characterized by its 2-m resolution PAN data. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the well-known earth observation satellite, is advanced by its finer spectral resolution owing 9 bands in the visible and near infrared (VNIR) to the short-wave infrared (SWIR) region. In this study, we fused the GF-1 PAN and the ASTER multispectral data using the well-known Gram-Schmidt Pan Sharpening (G-S) method to produce a new data with both high spatial and spectral resolution. Then different lithological units were mapped respectively using the fusion data, the ASTER data and the WorldView-3 data by support vector machine (SVM) method. In order to assess this fusion data, a comparison work was executed among the three mapping results. The comparison work indicated that lithological classification using the new fusion data is an efficient, robust and low cost method, and it could replace the WV-3 data in some large sale geological work.


1976 ◽  
Vol 31 (12) ◽  
pp. 1690-1695 ◽  
Author(s):  
F. W. Nees ◽  
M. Buback

AbstractThe near infrared absorption of pure ethylene in the region of the second overtone of the C-H stretching fundamentals (8200 cm-1 to 9500 cm-1) was measured at supercritical temperatures (Tc = 9.5 °C) between 22 °C and 200 °C from 0.7 bar to 3000 bar. The density and temperature dependence of bandshape, maximum frequency and absorption intensity are reported and discussed. The bands observed within a wide range of experimental conditions are assigned to combination and overtone modes. The molar integrated intensity B̅λ determined between the wavelength of maximum absorption and the high frequency absorption boundary was observed to be independent of pressure and temperature. This enables spectroscopic concentration determinations on ethylene in high pressure - high temperature phase equilibria and reactions.


Entropy ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 26 ◽  
Author(s):  
David Perpetuini ◽  
Antonio M. Chiarelli ◽  
Daniela Cardone ◽  
Chiara Filippini ◽  
Roberta Bucco ◽  
...  

Decline in visuo-spatial skills and memory failures are considered symptoms of Alzheimer’s Disease (AD) and they can be assessed at early stages employing clinical tests. However, performance in a single test is generally not indicative of AD. Functional neuroimaging, such as functional Near Infrared Spectroscopy (fNIRS), may be employed during these tests in an ecological setting to support diagnosis. Indeed, neuroimaging should not alter clinical practice allowing free doctor-patient interaction. However, block-designed paradigms, necessary for standard functional neuroimaging analysis, require tests adaptation. Novel signal analysis procedures (e.g., signal complexity evaluation) may be useful to establish brain signals differences without altering experimental conditions. In this study, we estimated fNIRS complexity (through Sample Entropy metric) in frontal cortex of early AD and controls during three tests that assess visuo-spatial and short-term-memory abilities (Clock Drawing Test, Digit Span Test, Corsi Block Tapping Test). A channel-based analysis of fNIRS complexity during the tests revealed AD-induced changes. Importantly, a multivariate analysis of fNIRS complexity provided good specificity and sensitivity to AD. This outcome was compared to cognitive tests performances that were predictive of AD in only one test. Our results demonstrated the capabilities of fNIRS and complexity metric to support early AD diagnosis.


Author(s):  
Sathish K. Gurupatham ◽  
Erhan Ilksoy ◽  
Nick Jacob ◽  
Kevin Van Der Horn ◽  
Fahad Fahad

Novel technologies have always been an indispensable part of the scientific enterprise and a catalyst for new discoveries. The invisible radiation patterns of objects are converted into visible images called thermograms or thermal images. Thermal images can be utilized to estimate the ripeness of some fruits which do not change their color from yellow to green when they are ripe. Thermal imaging techniques are very helpful since color and fluorescent analytical approaches cannot be applied to these fruits. In this work, it is shown that different ripeness levels of avocado (Hall type) using a non-destructive method called thermal imaging, in two dimensional spaces. The work is based on the fact that fruits have different specific heat capacities at different temperatures, thus making their thermal images clear indicators of ripeness.


Sign in / Sign up

Export Citation Format

Share Document