Insights into Eucalyptus genus chemical constituents, biological activities and health-promoting effects

2019 ◽  
Vol 91 ◽  
pp. 609-624 ◽  
Author(s):  
Bahare Salehi ◽  
Javad Sharifi-Rad ◽  
Cristina Quispe ◽  
Henrry Llaique ◽  
Michael Villalobos ◽  
...  
2021 ◽  
Author(s):  
Innocent U Okagu ◽  
Joseph C Ndefo ◽  
Matthias Onyebuchi Agbo

Newbouldia laevis (P. Beauv.) Seem. (Family, Bignoniaceae), commonly known as tree of life, is a purple-flowering plant that is widely distributed in many parts of Africa. Different parts of the plant, including the leaves, flower, stems and roots are prevalently used in African traditional medicine for the management of many diseases and conditions like diabetes, hypertension, skin diseases, ulcer, tumors, pains, infectious diseases, inflammation, dysentery, sickle cell disease and impotency. This review discusses the trado-medical uses, chemical constituents, and biological activities of N. laevis. Based on information generated from scientific investigations deposited in PubMed and SCOPUS, the chemical constituents of the plant include glycosides, anthraquinolones, volatile oils, tannins, steroids, alkaloids, flavonoids, terpenoids and sterols. Extracts different parts of the plant and compounds isolated from them have been reported to have several health-promoting potentials such as antioxidant, antimalarial, trypanocidal, antimicrobial, anthelmintic, analgesic, anti-inflammatory, antidiabetic, anti-arthritic, anti-thrombotic, cytoprotective, anti-hypertensive, central nervous system modulatory, male reproduction enhancing and oxytocic properties. These scientific investigations have led credence to the ethnobotanical uses of the plant in folkloric practice. In addition, the presence of phytochemical constituents in the plant might be responsible for the wide biological potentials.


Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
JJ Chen ◽  
CW Ting ◽  
MH Yen ◽  
TL Hwang ◽  
C Peng ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
pp. 87-93 ◽  
Author(s):  
Vinay Bharadwaj Tatipamula ◽  
Girija Sastry Vedula

Background: Lichens which are betide to mangroves are termed as Manglicolous Lichens (ML). As these ML are habituated under stress conditions, they are screened for unique metabolites and biological activities. Objective: The study aimed to establish the chemical and biological profile of ML, Graphis ajarekarii. Methods: The Ethyl Acetate Extract of G. ajarekarii (EAE) was subjected to chromatographic techniques and the obtained isolates were characterized by spectroscopic analysis. The hydroalcoholic extract of G. ajarekarii (AE), EAE, isolates and Hydroalcoholic Extract of host (HE) were evaluated for fibrinolytic (fibrin clot method), in vitro (protein denaturation method) and in vivo (formalin-induced rat paw oedema assay), anti-inflammatory and cytotoxicity (MTT assay) activities. Results: Chemical investigation of the EAE led to the isolation of two known compounds namely atranorin (1) and ribenone (2), which were confirmed by spectral data. The AE and EAE gradually lysed the fibrin clot with 94.54 and 65.07%, respectively, at 24 h. The AE inhibited protein denaturation of about 88.06%, while the standard (Indomethacin) with 93.62%. Similarly, the in vivo antiinflammatory analysis of AE (200 mg/mL) showed potent reduction of rat paw oedema than the standard, whereas EAE and 1 depicted moderate depletion. In addition, the AE revealed prominence inhibition on MCF-7, DU145 and K-562 with IC50 values of 69.5, 42.5 and 38 µg/mL, respectively, whereas the HE exhibited mild inhibitory profile against fibrin clot, inflammation and cancer. Conclusion: From the results, it can be concluded that the G. ajarekarii has an aptitude to act against coagulation, inflammation and cancer cells.


2019 ◽  
Vol 9 (3) ◽  
pp. 238-243 ◽  
Author(s):  
Emine Dede ◽  
Nusret Genc ◽  
Mahfuz Elmastas ◽  
Huseyin Aksit ◽  
Ramazan Erenler

Background: Plant in Rhododendron genus that contains phenolic compounds has been used in traditional medicine and revealed considerable biological activities. Objective: Isolation and identification of antioxidant natural products from Rhododendron ungernii. Methods: Rhododendron ungernii Trautv. flowers were collected and dried in shade. The dried flowers were extracted with methanol for 3 days. The solvent was removed by reduced pressure to yield the extract which was subjected to column chromatography (Sephadex LH-20, C18 reversed phase column) to isolate catechin-7-O-glucoside (1), quercetin-3-O-β-galactoside (2), quercetin-3-O- β-xyloside (3), farrerol (4), myricetin (5), and quercetin (6). The structures of isolated compounds were elucidated by spectroscopic methods such as 1D-NMR, 2D-NMR, and LC-TOF/MS. DPPH scavenging effect, ABTS+ scavenging activity, and reducing power (FRAP) were performed for antioxidant assays of isolated natural compounds. Results: Isolated flavonoids displayed the outstanding antioxidant activities. Catechin-7-O-glucoside (1) and quercetin-3-O-β-galactoside (2) (IC50, 3.66 µg/mL) had the most DPPH• scavenging effect among the compounds. The highest ABTS•+ scavenging activity (IC50, 1.41 µg/mL) and reducing power effect (6.05 mmol TE/g comp) were observed for myricetin (5). Conclusion: R. ungernii extract and isolated compounds could be a promising antioxidant for food and pharmaceutical industries.


2020 ◽  
Vol 18 (1) ◽  
pp. 778-797
Author(s):  
Khun Nay Win Tun ◽  
Nanik Siti Aminah ◽  
Alfinda Novi Kristanti ◽  
Hnin Thanda Aung ◽  
Yoshiaki Takaya

AbstractAbout 140 genera and more than 1,600 species belong to the Rutaceae family. They grow in temperate and tropical zones on both hemispheres, as trees, shrubs, and herbs. Casimiroa is one of the genera constituting 13 species, most of which are found in tropical and subtropical regions. Many chemical constituents have been derived from this genus, including quinoline alkaloids, flavonoids, coumarins, and N-benzoyltyramide derivatives. This article reviews different studies carried out on aromatic compounds of genus Casimiroa; their biological activities; the different skeletons of coumarins, alkaloids, flavonoids, and others; and their characteristic NMR spectral data.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 883
Author(s):  
Mebeaselassie Andargie ◽  
Maria Vinas ◽  
Anna Rathgeb ◽  
Evelyn Möller ◽  
Petr Karlovsky

Major lignans of sesame sesamin and sesamolin are benzodioxol--substituted furofurans. Sesamol, sesaminol, its epimers, and episesamin are transformation products found in processed products. Synthetic routes to all lignans are known but only sesamol is synthesized industrially. Biosynthesis of furofuran lignans begins with the dimerization of coniferyl alcohol, followed by the formation of dioxoles, oxidation, and glycosylation. Most genes of the lignan pathway in sesame have been identified but the inheritance of lignan content is poorly understood. Health-promoting properties make lignans attractive components of functional food. Lignans enhance the efficiency of insecticides and possess antifeedant activity, but their biological function in plants remains hypothetical. In this work, extensive literature including historical texts is reviewed, controversial issues are critically examined, and errors perpetuated in literature are corrected. The following aspects are covered: chemical properties and transformations of lignans; analysis, purification, and total synthesis; occurrence in Seseamum indicum and related plants; biosynthesis and genetics; biological activities; health-promoting properties; and biological functions. Finally, the improvement of lignan content in sesame seeds by breeding and biotechnology and the potential of hairy roots for manufacturing lignans in vitro are outlined.


2021 ◽  
pp. 1-8
Author(s):  
Yun Wang ◽  
Dao-Qun Shi ◽  
Na Jiang ◽  
Kai-Rui Rao ◽  
Shi-Xian Zhang ◽  
...  

Planta Medica ◽  
2021 ◽  
Author(s):  
Garima Agarwal ◽  
Long-Sheng Chang ◽  
Djaja Doel Soejarto ◽  
A. Douglas Kinghorn

AbstractWith about 120 species, Aglaia is one of the largest genera of the plant family Meliaceae (the mahogany plants). It is native to the tropical rainforests of the Indo-Australian region, ranging from India and Sri Lanka eastward to Polynesia and Micronesia. Various Aglaia species have been investigated since the 1960s for their phytochemical constituents and biological properties, with the cyclopenta[b]benzofurans (rocaglates or flavaglines) being of particular interest. Phytochemists, medicinal chemists, and biologists have conducted extensive research in establishing these secondary metabolites as potential lead compounds with antineoplastic and antiviral effects, among others. The varied biological properties of rocaglates can be attributed to their unusual structures and their ability to act as inhibitors of the eukaryotic translation initiation factor 4A (eIF4A), affecting protein translation. The present review provides an update on the recently reported phytochemical constituents of Aglaia species, focusing on rocaglate derivatives. Furthermore, laboratory work performed on investigating the biological activities of these chemical constituents is also covered.


2021 ◽  
Vol 22 (6) ◽  
pp. 3018
Author(s):  
Biane Philadelpho ◽  
Victória Souza ◽  
Fabiani Souza ◽  
Johnnie Santos ◽  
Fabiana Batista ◽  
...  

Adzuki seed β-vignin, a vicilin-like globulin, has proven to exert various health-promoting biological activities, notably in cardiovascular health. A simple scalable enrichment procedure of this protein for further nutritional and functional studies is crucial. In this study, a simplified chromatography-independent protein fractionation procedure has been optimized and described. The electrophoretic analysis showed a high degree of homogeneity of β-vignin isolate. Furthermore, the molecular features of the purified protein were investigated. The adzuki bean β-vignin was found to have a native size of 146 kDa, and the molecular weight determined was consistent with a trimeric structure. These were identified in two main polypeptide chains (masses of 56–54 kDa) that are glycosylated polypeptides with metal binding capacity, and one minor polypeptide chain with a mass 37 kDa, wherein these features are absent. The in vitro analysis showed a high degree of digestibility of the protein (92%) and potential anti-inflammatory capacity. The results lay the basis not only for further investigation of the health-promoting properties of the adzuki bean β-vignin protein, but also for a possible application as nutraceutical molecule.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1306
Author(s):  
Marcin Dziedziński ◽  
Joanna Kobus-Cisowska ◽  
Barbara Stachowiak

The pine (Pinus L.) is the largest and most heteromorphic plant genus of the pine family (Pinaceae Lindl.), which grows almost exclusively in the northern hemisphere. The demand for plant-based remedies, supplements and functional food is growing worldwide. Although pine-based products are widely available in many parts of the world, they are almost absent as food ingredients. The literature shows the beneficial effects of pine preparations on human health. Despite the wide geographical distribution of pine trees in the natural environment, there are very few data in the literature on the widespread use of pine in food technology. This study aims to present, characterise and evaluate the content of phytochemicals in pine trees, including shoots, bark and conifer needles, as well as to summarise the available data on their health-promoting and functional properties, and the potential of their use in food and the pharmaceutical industry to support health. Various species of pine tree contain different compositions of bioactive compounds. Regardless of the solvent, method, pine species and plant part used, all pine extracts contain a high number of polyphenols. Pine tree extracts exhibit several described biological activities that may be beneficial to human health. The available examples of the application of pine elements in food are promising. The reuse of residual pine elements is still limited compared to its potential. In this case, it is necessary to conduct more research to find and develop new products and applications of pine residues and by-products.


Sign in / Sign up

Export Citation Format

Share Document