Development and assessment of nanoparticle suspensions as fundament for toxicological analysis

2009 ◽  
Vol 189 ◽  
pp. S185
Author(s):  
Tobias Meißner ◽  
Annegret Potthoff ◽  
Volkmar Richter
2019 ◽  
Vol 26 (1) ◽  
pp. 177-196 ◽  
Author(s):  
Mateusz Kacper Woźniak ◽  
Marek Wiergowski ◽  
Jacek Namieśnik ◽  
Marek Biziuk

Background:Ethyl alcohol is the most popular legal drug, but its excessive consumption causes social problems. Despite many public campaigns against alcohol use, car accidents, instances of aggressive behaviour, sexual assaults and deterioration in labor productivity caused by inebriated people is still commonplace. Fast and easy diagnosis of alcohol consumption is required in order to introduce proper and effective therapy, and is crucial in forensic toxicology analysis. The easiest method to prove alcohol intake is determination of ethanol in body fluids or in breath. However, since ethanol is rapidly metabolized in the human organism, only recent consumption can be detected using this method. Because of that, the determination of alcohol biomarkers was introduced for monitoring alcohol consumption over a wider range of time.Objective:The objective of this study was to review published studies focusing on the sample preparation methods and chromatographic or biochemical techniques for the determination of alcohol biomarkers in whole blood, plasma, serum and urine.Methods:An electronic literature search was performed to discuss possibilities and limitations of application of alcohol biomarkers in toxicological analysis.Results:Authors described the markers of alcohol consumption such as: ethanol, its nonoxidative metabolites (ethyl glucuronide, ethyl sulfate, phosphatidylethanol, ethyl phosphate, fatty acid ethyl esters) and oxidative metabolites (acetaldehyde and acetaldehyde adducts). We also discussed issues concerning the detection window of these biomarkers, and possibilities and limitations of their use in routine analytical toxicology for monitoring alcohol consumption or sobriety during alcohol therapy.


2020 ◽  
Vol 16 (2) ◽  
pp. 204-213 ◽  
Author(s):  
Melissa A. Vetten ◽  
Mary Gulumian

Background: Endotoxin-free engineered nanoparticle suspensions are imperative for their successful applications in the field of nanomedicine as well as in the investigations in their toxicity. Gold nanoparticles are known to interfere with various in vitro assays due to their optical properties and potential for surface reactivity. In vitro endotoxin testing assays are known to be susceptible to interference caused by the sample being tested. Objective: This study aimed to identify a preferred assay for the testing of endotoxin contamination in gold nanoparticle suspensions. Methods: The interference by gold nanoparticles on three assays namely, the commonly used limulus amebocyte lysate chromogenic assay, the limulus amebocyte lysate gel-clot method, and the less common recombinant Factor C (rFC) assay, was tested. Results: Possible interference could be observed with all three assays. The interference with the absorbance- based chromogenic assay could not be overcome by dilution; whilst the qualitative nature of the gel-clot assay excluded the possibility of distinguishing between a false positive result due to enhancement of the sensitivity of the assay, and genuine endotoxin contamination. However, interference with the rFC assay was easily overcome through dilution. Conclusion: The rFC assay is recommended as an option for endotoxin contamination detection in gold nanoparticle suspensions.


2019 ◽  
Vol 19 (5) ◽  
pp. 667-676
Author(s):  
José R. Santin ◽  
Gislaine F. da Silva ◽  
Maria V.D. Pastor ◽  
Milena F. Broering ◽  
Roberta Nunes ◽  
...  

Background: It was recently demonstrated that the phthalimide N-(4-methyl-phenyl)-4- methylphthalimide (MPMPH-1) has important effects against acute and chronic pain in mice, with a mechanism of action correlated to adenylyl cyclase inhibition. Furthermore, it was also demonstrated that phthalimide derivatives presented antiproliferative and anti-tumor effects. Considering the literature data, the present study evaluated the effects of MPMPH-1 on breast cancer bone metastasis and correlated painful symptom, and provided additional toxicological information about the compound and its possible metabolites. Methods: In silico toxicological analysis was supported by in vitro and in vivo experiments to demonstrate the anti-tumor and anti-hypersensitivity effects of the compound. Results: The data obtained with the in silico toxicological analysis demonstrated that MPMPH-1 has mutagenic potential, with a low to moderate level of confidence. The mutagenicity potential was in vivo confirmed by micronucleus assay. MPMPH-1 treatments in the breast cancer bone metastasis model were able to prevent the osteoclastic resorption of bone matrix. Regarding cartilage, degradation was considerably reduced within the zoledronic acid group, while in MPMPH-1, chondrocyte multiplication was observed in random areas, suggesting bone regeneration. Additionally, the repeated treatment of mice with MPMPH-1 (10 mg/kg, i.p.), once a day for up to 36 days, significantly reduces the hypersensitivity in animals with breast cancer bone metastasis. Conclusion: Together, the data herein obtained show that MPMPH-1 is relatively safe, and significantly control the cancer growth, allied to the reduction in bone reabsorption and stimulation of bone and cartilage regeneration. MPMPH-1 effects may be linked, at least in part, to the ability of the compound to interfere with adenylylcyclase pathway activation.


Author(s):  
Michael Ludwig ◽  
Regine von Klitzing

Complete interaction force profiles of charged surfaces across confined suspensions were successfully described using a superposition of double layer and structural forces.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 221
Author(s):  
Argelia Balbuena Balbuena Ortega ◽  
Felix E. Torres-González ◽  
Valentin López López Gayou ◽  
Raul Delgado Delgado Macuil ◽  
Gaetano Assanto ◽  
...  

We carry out an experimental campaign to investigate the nonlinear self-defocusing propagation of singular light beams with various complex structures of phase and intensity in a colloidal suspension of gold nanoparticles with a plasmonic resonance near the laser wavelength (532nm). Studying optical vortices embedded in Gaussian beams, Bessel vortices and Bessel-cosine (necklace) beams, we gather evidence that while intense vortices turn into two-dimensional dark solitons, all structured wavepackets are able to guide a weak Gaussian probe of different wavelength (632.8 nm) along the dark core. The probe confinement also depends on the topological charge of the singular pump.


2014 ◽  
Vol 16 (4) ◽  
Author(s):  
Justin M. Gorham ◽  
Anne B. Rohlfing ◽  
Katrice A. Lippa ◽  
Robert I. MacCuspie ◽  
Amy Hemmati ◽  
...  

2021 ◽  
pp. 100117
Author(s):  
Flora Martinez Figueira Moreira ◽  
Joyce Alencar Santos Radai ◽  
Vanessa Vilamaior de Souza ◽  
Claudia Rodrigues Berno ◽  
Flavio Henrique Souza de Araújo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document