Optimizing electric bus charging infrastructure considering power matching and seasonality

2021 ◽  
Vol 100 ◽  
pp. 103057
Author(s):  
Xiaohan Liu ◽  
Xiaobo Qu ◽  
Xiaolei Ma
2019 ◽  
Vol 9 (16) ◽  
pp. 3352 ◽  
Author(s):  
Yuhuan Liu ◽  
Enjian Yao ◽  
Shasha Liu

As a new type of green bus, the pure electric bus has obvious advantages in energy consumption and emission reduction compared with the traditional fuel bus. However, the pure electric bus has a mileage range constraint and the amount of charging infrastructure cannot meet the demand, which makes the scheduling of the electric bus driving plans more complicated. Meanwhile, many routes are operated with mixing pure electric buses and traditional fuel buses. As mentioned above, we focus on the operating organization problem with the multi-type bus (pure electric buses and traditional fuel buses), aiming to provide guidance for future application of electric buses. We take minimizing the energy consumption of vehicles, the waiting and traveling time of passengers as the objectives, while considering the constraints of vehicle full load limitation, minimal departure interval, mileage range and charging time window. The energy consumption based multi-type bus operating organization model was formulated, along with the heuristic algorithm to solve it. Then, a case study in Beijing was performed. The results showed that, the optimal mixing ratio of electric bus and fuel bus vary according to the variation of passenger flow. In general, each fuel bus could be replaced by two pure electric buses. Moreover, in the transition process of energy structure in public transport, the vehicle scale keeps increasing. The parking yard capacity and the amount of charging facilities are supposed to be further expanded.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2866
Author(s):  
Andong Yin ◽  
Shenchun Wu ◽  
Weihan Li ◽  
Jinfang Hu

As an attractive alternative to the traditional plug-in charged electric vehicles (EVs), wireless-charged EVs have recently been in the spotlight. Opportunistically charged utilizing the wireless-charging infrastructure installed under the road at bus stops, an electric bus can have a smaller and lighter battery pack. In this paper, an improved opportunistic wireless-charging system (OWCS) for electric bus is introduced, which includes the opportunistic stationary wireless-charging system (OSWCS) and opportunistic hybrid wireless-charging system (OHWCS) consisting of stationary wireless-charging and dynamic wireless-charging. A general battery reduction model is established for the opportunistic wireless-charged electric bus (OWCEB). Two different battery-reduction models are built separately for OWCEB on account of the characteristics of OSWCS and OHWCS. Additionally, the cost saving models including the production cost saving, the operation cost saving and total cost saving are established. Then, the mathematical models are demonstrated with a numerical example intuitively. Furthermore, we analyze several parameters that influence the effectiveness of battery reduction due to the application of an opportunistic wireless-charging system on an electric bus. Finally, some points worth discussing in this work are performed.


2017 ◽  
Vol 27 ◽  
pp. 776-783 ◽  
Author(s):  
Maria Xylia ◽  
Sylvain Leduc ◽  
Piera Patrizio ◽  
Semida Silveira ◽  
Florian Kraxner

2019 ◽  
Vol 10 (1) ◽  
pp. 5 ◽  
Author(s):  
Andreas Raab ◽  
Enrico Lauth ◽  
Kai Strunz ◽  
Dietmar Göhlich

For the purpose of utilizing electric bus fleets in metropolitan areas and with regard to providing active energy management at depots, a profound understanding of the transactions between the market entities involved in the charging process is given. The paper examines sophisticated charging strategies with energy procurements in joint market operation. Here, operation procedures and characteristics of a depot including the physical layout and utilization of appropriate charging infrastructure are investigated. A comprehensive model framework for a virtual power plant (VPP) is formulated and developed to integrate electric bus fleets in the power plant portfolio, enabling the provision of power system services. The proposed methodology is verified in numerical analysis by providing optimized dispatch schedules in day-ahead and intraday market operations.


Energy ◽  
2020 ◽  
Vol 213 ◽  
pp. 118855
Author(s):  
Yaseen Alwesabi ◽  
Yong Wang ◽  
Raul Avalos ◽  
Zhaocai Liu

2019 ◽  
Vol 9 (9) ◽  
pp. 1748 ◽  
Author(s):  
Amra Jahic ◽  
Mina Eskander ◽  
Detlef Schulz

The city of Hamburg has decided to electrify its bus fleets. The two public transportation companies in this city expect to operate up to 1500 buses by 2030. In order to accomplish this ambitious goal, both companies need to build an appropriate charging infrastructure. They have both decided to implement the centralized depot charging concept. Buses can therefore charge only at the depot and do not have the possibility for opportunity charging at intermediate stations. The load profile of such a bus depot is highly dependent on the charging schedule of buses. Without an intelligent scheduling system, the buses charge on demand as soon as they arrive to the depot. This can lead to an unevenly distributed load profile with high load peaks, which is problematic for the local grid as well as for the equipment dimensioning at the depot. Charging scheduling on large-scale bus depots is a relatively new and poorly researched topic. This paper addresses the issue and proposes two algorithms for charging scheduling on large-scale bus depots with the goal to minimize the peak load. The schedules created with the proposed algorithms were both tested and validated in the Bus Depot Simulator, a cosimulation platform used for bus depot simulations.


2019 ◽  
Vol 26 (1) ◽  
pp. 81-99 ◽  
Author(s):  
Andrei Bezruchonak

This article reviews the emerging phenomena of electric buses’ deployment in Europe and Belarus within the general framework of the concept of sustainable and electric urban mobility. The author offers a brief overview of electric bus technologies available on the market and a spatial analysis of fleet deployment in Europe. The analysis of the spatial structure of the distribution of e-buses in Europe indicated that, in terms of the number of vehicles in operation, the UK and the Netherlands are the regional leaders, while in terms of the number of cities testing e-buses – Germany, Sweden, and Poland are the leaders. The analysis showed that the main factors supporting the distribution of innovative technology and public support are legislative and regulative framework as well as clear strategic planning and cooperation between local administrations and transportation authorities. Other important aspects, such as network building features, and the location of the charging infrastructure were also discussed. The analysis of the case study of Minsk (the first city to introduce electric buses in Belarus) outlined the typical limiting factors for all types of markets: high battery costs and dependency on infrastructure; recommendations are given to emphasise bus fleet replacement (instead of trolleybus) and to develop a comprehensive sustainable urban mobility strategy.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2348 ◽  
Author(s):  
Fernando Ortenzi ◽  
Manlio Pasquali ◽  
Pier Paolo Prosini ◽  
Alessandro Lidozzi ◽  
Marco Di Benedetto

The last few decades have seen a significant increase in the number of electric vehicles (EVs) for private and public transportation around the world. This has resulted in high power demands on the electrical grid, especially when fast and ultra-fast or flash (at the bus-stop) charging are required. Consequently, a ground storage should be used in order to mitigate the peak power request period. This paper deals with an innovative and simple fast charging infrastructure based on supercapacitors, used to charge the energy storage system on board electric buses. According to the charging level of the electric bus, the proposed fast charging system is able to provide the maximum power of 180 kW without exceeding 30 s and without using DC–DC converters. In order to limit the maximum charging current, the electric bus is charged in three steps through three different connectors placed between the supercapacitors on board the bus and the fast charging system. The fast charging system has been carefully designed, taking into account several system parameters, such as charging time, maximum current, and voltage. Experimental tests have been performed on a fast charging station prototype to validate the theoretical analysis and functionality of the proposed architecture.


Sign in / Sign up

Export Citation Format

Share Document