The first impression counts – A combined driving simulator and test track study on the development of trust and acceptance of highly automated driving

Author(s):  
Franziska Hartwich ◽  
Claudia Witzlack ◽  
Matthias Beggiato ◽  
Josef F. Krems
Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 62 ◽  
Author(s):  
Alexander Feierle ◽  
Simon Danner ◽  
Sarah Steininger ◽  
Klaus Bengler

During highly automated driving, the passenger is allowed to conduct non-driving related activities (NDRA) and no longer has to act as a fallback at the functional limits of the driving automation system. Previous research has shown that at lower levels of automation, passengers still wish to be informed about automated vehicle behavior to a certain extent. Due to the aim of the introduction of urban automated driving, which is characterized by high complexity, we investigated the information needs and visual attention of the passenger during urban, highly automated driving. Additionally, there was an investigation into the influence of the experience of automated driving and of NDRAs on these results. Forty participants took part in a driving simulator study. As well as the information presented on the human–machine interface (system status, navigation information, speed and speed limit), participants requested information about maneuvers, reasons for maneuvers, environmental settings and additional navigation data. Visual attention was significantly affected by the NDRA, while the experience of automated driving had no effect. Experience and NDRA showed no significant effect on the need for information. Differences in information needs seem to be due to the requirements of the individual passenger, rather than the investigated factors.


Author(s):  
Christoph Heimsath ◽  
Werner Krantz ◽  
Jens Neubeck ◽  
Christian Holzapfel ◽  
Andreas Wagner

Author(s):  
Anna Feldhütter ◽  
Christian Gold ◽  
Adrian Hüger ◽  
Klaus Bengler

Highly automated vehicles (HAV), which could help to enhance road safety and efficiency, are very likely to enter the market within the next decades. To have an impact, these systems need to be purchased, which is a matter of trust and acceptance. These factors are dependent on the level of information that one has about such systems. One important source of information is various media, such as newspapers, magazines and videos, in which highly automated driving (HAD) is currently a frequent topic of discussion. To evaluate the influence of media on the perception of HAD, 31 participants were presented with three different types of media addressing HAD in a neutral manner. Afterwards, the participants experienced HAD in the driving simulator. In between these steps, the participants completed questionnaires assessing comfort, trust in automation, increase in safety, intention to use and other factors in order to analyze the effect of the media and the driving simulation experience. Results indicate that the perception of some aspects of HAD were affected by the media presented, while experiencing HAD in the driving simulator generally did not have an effect on the attitude of the participants. Other aspects, such as trust, were not affected by either media or experience. In addition, gender-related differences in the perception of HAD were found.


Author(s):  
Huiping Zhou ◽  
Makoto Itoh ◽  
Satoshi Kitazaki

This paper presents an adaptive mode (level) transition in highly combined driving automation in which the mode of a system could adaptively shift to any level including SAE level 3 (conditional automation, CA) to level 2 (partial automation) based on the driving environment. We show the effects of the adaptive transition on the take over of car control by a human driver and driving behavior after intervention when the system issues a response to intervene. A driving simulator experiment is conducted to collect data during the transition from automated control to manual driving in three scenes: obstacle on a driving lane, blurred lane mark, and stopped car ahead. Results indicate that the interventions of drivers who experience the adaptive transition are delayed in comparison to those who experience only the fixed transition. The adaptive transition is conducive for drivers to stop the car for preventing a potential collision with a stopped car ahead. Owing to the adaptive transition, drivers perceive a critical hazard after taking over car control and provide a rapid response. In addition, during the adaptive transition, drivers prefer verbal messages to the simple “beeping” message.


Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 115 ◽  
Author(s):  
Marlene Susanne Lisa Scharfe ◽  
Kathrin Zeeb ◽  
Nele Russwinkel

In the development of highly automated driving systems (L3 and 4), much research has been done on the subject of driver takeover. Strong focus has been placed on the takeover quality. Previous research has shown that one of the main influencing factors is the complexity of a traffic situation that has not been sufficiently addressed so far, as different approaches towards complexity exist. This paper differentiates between the objective complexity and the subjectively perceived complexity. In addition, the familiarity with a takeover situation is examined. Gold et al. show that repetition of takeover scenarios strongly influences the take-over performance. Yet, both complexity and familiarity have not been considered at the same time. Therefore, the aim of the present study is to examine the impact of objective complexity and familiarity on the subjectively perceived complexity and the resulting takeover quality. In a driving simulator study, participants are requested to take over vehicle control in an uncritical situation. Familiarity and objective complexity are varied by the number of surrounding vehicles and scenario repetitions. Subjective complexity is measured using the NASA-TLX; the takeover quality is gathered using the take-over controllability rating (TOC-Rating). The statistical evaluation results show that the parameters significantly influence the takeover quality. This is an important finding for the design of cognitive assistance systems for future highly automated and intelligent vehicles.


Author(s):  
Marlene Susanne Lisa Scharfe-Scherf ◽  
Nele Russwinkel

AbstractThis paper shows, how objective complexity and familiarity impact the subjective complexity and the time to make an action decision during the takeover task in a highly automated driving scenario. In the next generation of highly automated driving the driver remains as fallback and has to take over the driving task whenever the system reaches a limit. It is thus highly important to develop an assistance system that supports the individual driver based on information about the drivers’ current cognitive state. The impact of familiarity and complexity (objective and subjective) on the time to make an action decision during a takeover is investigated. To produce replicable driving scenarios and manipulate the independent variables situation familiarity and objective complexity, a driving simulator is used. Results show that the familiarity with a traffic situation as well as the objective complexity of the environment significantly influence the subjective complexity and the time to make an action decision. Furthermore, it is shown that the subjective complexity is a mediator variable between objective complexity/familiarity and the time to make an action decision. Complexity and familiarity are thus important parameters that have to be considered in the development of highly automated driving systems. Based on the presented mediation effect, the opportunity of gathering the drivers’ subjective complexity and adapting cognitive assistance systems accordingly is opened up. The results of this study provide a solid basis that enables an individualization of the takeover by implementing useful cognitive modeling to individualize cognitive assistance systems for highly automated driving.


2021 ◽  
Author(s):  
Chen Peng ◽  
Natasha Merat ◽  
Richard Romano ◽  
Foroogh Hajiseyedjavadi ◽  
Evangelos Paschalidis ◽  
...  

Objective: This study investigated users’ subjective evaluation of three highly automated driving styles, in terms of comfort and naturalness, when negotiating a UK road in a high-fidelity, motion-based, driving simulator. Background: Comfort and naturalness are thought to play an important role in contributing to users’ acceptance and trust of automated vehicles (AVs), although not much is understood about the types of driving style which are considered comfortable or natural. Method: A driving simulator study, simulating roads with different road geometries and speed limits, was conducted. Twenty-four participants experienced three highly automated driving styles, two of which were recordings from human drivers, and the other was based on a machine learning (ML) algorithm, termed Defensive, Aggressive, and Turner respectively. Participants evaluated comfort or naturalness of each driving style, for each road segment, and completed a Sensation Seeking (SS) questionnaire, which assessed their risk-taking propensity. Results: Participants regarded human-like driving styles as more comfortable and natural, compared with the less human-like, ML-based, driving controller. However, between the two human-like controllers, only the Defensive style was considered comfortable, especially for the more challenging road environments. Differences in preference for controller by driver trait were also observed, with the Aggressive driving style evaluated as more natural by the high sensation seekers. Conclusion: Participants were able to distinguish between human- and machine-like AV controllers. A range of psychological concepts must be considered for the subjective evaluation of controllers. Application: Knowing how different driver groups evaluate automated vehicle controllers is important to design more acceptable systems in the future.


2021 ◽  
Author(s):  
J. B. Manchon ◽  
Mercedes Bueno ◽  
Jordan Navarro

Trust in Automation is known to influence human-automation interaction and user behaviour. In the Automated Driving (AD) context, studies showed the impact of drivers’ Trust in Automated Driving (TiAD), and linked it with, e.g., difference in environment monitoring or driver’s behaviour. This study investigated the influence of driver’s initial level of TiAD on driver’s behaviour and early trust construction during Highly Automated Driving (HAD). Forty drivers participated in a driving simulator study. Based on a trust questionnaire, participants were divided in two groups according to their initial level of TiAD: high (Trustful) vs. low (Distrustful). Declared level of trust, gaze behaviour and Non-Driving-Related Activities (NDRA) engagement were compared between the two groups over time. Results showed that Trustful drivers engaged more in NDRA and spent less time monitoring the road compared to Distrustful drivers. However, an increase in trust was observed in both groups. These results suggest that initial level of TiAD impact drivers’ behaviour and further trust evolution.


Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 114 ◽  
Author(s):  
Barbara Metz ◽  
Johanna Wörle ◽  
Michael Hanig ◽  
Marcus Schmitt ◽  
Aaron Lutz

Most studies on users’ perception of highly automated driving functions are focused on first contact/single usage. Nevertheless, it is expected that with repeated usage, acceptance and usage of automated driving functions might change this perception (behavioural adaptation). Changes can occur in drivers’ evaluation, in function usage and in drivers’ reactions to take-over situations. In a driving simulator study, N = 30 drivers used a level 3 (L3) automated driving function for motorways during six experimental sessions. They were free to activate/deactivate that system as they liked and to spend driving time on self-chosen side tasks. Results already show an increase of experienced trust and safety, together with an increase of time spent on side tasks between the first and fourth sessions. Furthermore, attention directed to the road decreases with growing experience with the system. The results are discussed with regard to the theory of behavioural adaptation. Results indicate that the adaptation of acceptance and usage of the highly automated driving function occurs rather quickly. At the same time, no behavioural adaptation for the reaction to take-over situations could be found.


Information ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 342 ◽  
Author(s):  
Johanna Wörle ◽  
Ramona Kenntner-Mabiala ◽  
Barbara Metz ◽  
Samantha Fritzsch ◽  
Christian Purucker ◽  
...  

When highly automated driving is realized, the role of the driver will change dramatically. Drivers will even be able to sleep during the drive. However, when awaking from sleep, drivers often experience sleep inertia, meaning they are feeling groggy and are impaired in their driving performance―which can be an issue with the concept of dual-mode vehicles that allow both manual and automated driving. Proactive methods to avoid sleep inertia like the widely applied ‘NASA nap’ are not immediately practicable in automated driving. Therefore, a reactive countermeasure, the sleep inertia counter-procedure for drivers (SICD), has been developed with the aim to activate and motivate the driver as well as to measure the driver’s alertness level. The SICD is evaluated in a study with N = 21 drivers in a level highly automation driving simulator. The SICD was able to activate the driver after sleep and was perceived as “assisting” by the drivers. It was not capable of measuring the driver’s alertness level. The interpretation of the findings is limited due to a lack of a comparative baseline condition. Future research is needed on direct comparisons of different countermeasures to sleep inertia that are effective and accepted by drivers.


Sign in / Sign up

Export Citation Format

Share Document