scholarly journals Drivers’ Evaluation of Different Automated Driving Styles: Is It both Comfortable and Natural?

2021 ◽  
Author(s):  
Chen Peng ◽  
Natasha Merat ◽  
Richard Romano ◽  
Foroogh Hajiseyedjavadi ◽  
Evangelos Paschalidis ◽  
...  

Objective: This study investigated users’ subjective evaluation of three highly automated driving styles, in terms of comfort and naturalness, when negotiating a UK road in a high-fidelity, motion-based, driving simulator. Background: Comfort and naturalness are thought to play an important role in contributing to users’ acceptance and trust of automated vehicles (AVs), although not much is understood about the types of driving style which are considered comfortable or natural. Method: A driving simulator study, simulating roads with different road geometries and speed limits, was conducted. Twenty-four participants experienced three highly automated driving styles, two of which were recordings from human drivers, and the other was based on a machine learning (ML) algorithm, termed Defensive, Aggressive, and Turner respectively. Participants evaluated comfort or naturalness of each driving style, for each road segment, and completed a Sensation Seeking (SS) questionnaire, which assessed their risk-taking propensity. Results: Participants regarded human-like driving styles as more comfortable and natural, compared with the less human-like, ML-based, driving controller. However, between the two human-like controllers, only the Defensive style was considered comfortable, especially for the more challenging road environments. Differences in preference for controller by driver trait were also observed, with the Aggressive driving style evaluated as more natural by the high sensation seekers. Conclusion: Participants were able to distinguish between human- and machine-like AV controllers. A range of psychological concepts must be considered for the subjective evaluation of controllers. Application: Knowing how different driver groups evaluate automated vehicle controllers is important to design more acceptable systems in the future.

2021 ◽  
Author(s):  
Foroogh Hajiseyedjavadi ◽  
Ewrin Boer ◽  
Richard Romano ◽  
Evangelos Paschalidis ◽  
Chongfeng Wei ◽  
...  

Achieving optimal performance in human-machine systems, such as highly automated vehicles, relies, in part, on individuals’ acceptance and use of the system, which is in turn affected by their enjoyment of engaging with, or experiencing, the system. This driving simulator study investigated individuals’ real-time subjective evaluation of four different Automated Vehicle (AV) driving styles, in different environmental contexts. Twenty-four participants were recruited to manually drive a contextually rich simulator environment, and to experience human-like and non-human-like AV driving styles, as well as the automated replay of their own manual drive. Their subjective real-time feedback towards these driving styles was analyzed. Our results showed that participants gave higher positive feedback towards the replay of their own drive, compared to the other three controllers. This difference was statistically significant, when compared to the high-speed controller (named as Fast), particularly for sharp curves. With respect to the replay of their own drive, participants gave higher negative feedback when navigating an Urban environment, compared to Rural settings. Moreover, changes in roadside furniture affected individuals’ feedback, and this effect was more prominent when the vehicle was driving closer to the edge of the road. Based on our results, we conclude that individuals’ perception of different AV driving styles changes based on different environmental conditions, including, but not limited to, road geometry and roadside furniture. These findings suggest that humans prefer a slower human-like driving style for AV controllers that adapts its speed and lateral offset to roadside objects and furniture. Investigating individual differences in AV driving style preference showed that low Sensation Seeking individuals preferred the slower human-like controller more than the faster human-like controller. Consideration of this human-centered feedback is important for the design of future AV controllers, to enhance individuals’ ride experience, and potentially improve acceptance and use of these vehicles.


Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 62 ◽  
Author(s):  
Alexander Feierle ◽  
Simon Danner ◽  
Sarah Steininger ◽  
Klaus Bengler

During highly automated driving, the passenger is allowed to conduct non-driving related activities (NDRA) and no longer has to act as a fallback at the functional limits of the driving automation system. Previous research has shown that at lower levels of automation, passengers still wish to be informed about automated vehicle behavior to a certain extent. Due to the aim of the introduction of urban automated driving, which is characterized by high complexity, we investigated the information needs and visual attention of the passenger during urban, highly automated driving. Additionally, there was an investigation into the influence of the experience of automated driving and of NDRAs on these results. Forty participants took part in a driving simulator study. As well as the information presented on the human–machine interface (system status, navigation information, speed and speed limit), participants requested information about maneuvers, reasons for maneuvers, environmental settings and additional navigation data. Visual attention was significantly affected by the NDRA, while the experience of automated driving had no effect. Experience and NDRA showed no significant effect on the need for information. Differences in information needs seem to be due to the requirements of the individual passenger, rather than the investigated factors.


Author(s):  
Christoph Heimsath ◽  
Werner Krantz ◽  
Jens Neubeck ◽  
Christian Holzapfel ◽  
Andreas Wagner

2021 ◽  
Author(s):  
J. B. Manchon ◽  
Mercedes Bueno ◽  
Jordan Navarro

Automated driving is becoming a reality, such technology raises new concerns about human-machine interaction on-road. Sixty-one drivers participated in an experiment aiming to better understand the influence of initial level of trust (Trustful vs Distrustful) on drivers’ behaviors and trust calibration during simulated Highly Automated Driving (HAD). The automated driving style was manipulated as positive (smooth) or negative (abrupt) to investigate human-machine early interactions. Trust was assessed over time through questionnaires. Drivers’ visual behaviors and take-over performances during an unplanned take-over request were also investigated. Results showed an increase of trust in automation over time, for both Trustful and Distrustful drivers regardless the automated driving style. Trust was also found to fluctuate over time depending on the specific events handled by the automated vehicle. Take-over performances were not influenced by the initial level of trust nor automated driving style.


2020 ◽  
Vol 4 (3) ◽  
pp. 36
Author(s):  
Tobias Hecht ◽  
Simon Danner ◽  
Alexander Feierle ◽  
Klaus Bengler

Current research in human factors and automated driving is increasingly focusing on predictable transitions instead of urgent and critical take-overs. Predictive human–machine interface (HMI) elements displaying the remaining time until the next request to intervene were identified as a user need, especially when the user is engaging in non-driving related activities (NDRA). However, these estimations are prone to errors due to changing traffic conditions and updated map-based information. Thus, we investigated a confidence display for Level 3 automated driving time estimations. Based on a preliminary study, a confidence display resembling a mobile phone connectivity symbol was developed. In a mixed-design driving simulator study with 32 participants, we assessed the impact of the confidence display concept (within factor) on usability, frustration, trust and acceptance during city and highway automated driving (between factor). During automated driving sections, participants engaged in a naturalistic visual NDRA to create a realistic scenario. Significant effects were found for the scenario: participants in the city experienced higher levels of frustration. However, the confidence display has no significant impact on the subjective evaluation and most participants preferred the baseline HMI without a confidence symbol.


Author(s):  
Anna Feldhütter ◽  
Christian Gold ◽  
Adrian Hüger ◽  
Klaus Bengler

Highly automated vehicles (HAV), which could help to enhance road safety and efficiency, are very likely to enter the market within the next decades. To have an impact, these systems need to be purchased, which is a matter of trust and acceptance. These factors are dependent on the level of information that one has about such systems. One important source of information is various media, such as newspapers, magazines and videos, in which highly automated driving (HAD) is currently a frequent topic of discussion. To evaluate the influence of media on the perception of HAD, 31 participants were presented with three different types of media addressing HAD in a neutral manner. Afterwards, the participants experienced HAD in the driving simulator. In between these steps, the participants completed questionnaires assessing comfort, trust in automation, increase in safety, intention to use and other factors in order to analyze the effect of the media and the driving simulation experience. Results indicate that the perception of some aspects of HAD were affected by the media presented, while experiencing HAD in the driving simulator generally did not have an effect on the attitude of the participants. Other aspects, such as trust, were not affected by either media or experience. In addition, gender-related differences in the perception of HAD were found.


Author(s):  
Huiping Zhou ◽  
Makoto Itoh ◽  
Satoshi Kitazaki

This study aims to investigate the influence of general knowledge, which denotes·driving automation’s taxonomy, definitions, function, driver role, and the request to intervene (RtI), on older adults’ takeover performance when using conditionally driving automation (DA), and to clarify the influence of knowledge on drivers’ attitudes toward DA. We introduced two types of DAs: full range and limited range. A driving simulator (DS) experiment was conducted to collect data, including driving behavior in taking over vehicle control and driver’s subjective evaluation of the DA. Data were collected from 36 elderly (mean age = 71.4±4.8 years) and 36 non-elderly (mean age = 40.8±9.5 years) participants. The results showed significant differences between the elderly and non-elderly, such that educating knowledge had a greater influence on the older adults, that is, instructing knowledge to the drivers contributed to a statistical increase in successful takeover rate from 0.66 to 0.80, but no effect was seen on either the response time or the maximum steering angular velocity. Furthermore, more frequent glance behavior of looking forward from a non-driving related task was observed in the educated groups. Self-rating scores of subjective evaluations revealed that older adults who were given the knowledge had a higher level of trust in and expectation from the DA, and more confidence in comprehending system functions. This study demonstrates the necessity of general knowledge instruction to enhance drivers’ positive attitudes toward DA.


Author(s):  
John D. Lee ◽  
Shu-Yuan Liu ◽  
Joshua Domeyer ◽  
Azadeh DinparastDjadid

Objective: This study examines how driving styles of fully automated vehicles affect drivers’ trust using a statistical technique—the two-part mixed model—that considers the frequency and magnitude of drivers’ interventions. Background: Adoption of fully automated vehicles depends on how people accept and trust them, and the vehicle’s driving style might have an important influence. Method: A driving simulator experiment exposed participants to a fully automated vehicle with three driving styles (aggressive, moderate, and conservative) across four intersection types (with and without a stop sign and with and without crossing path traffic). Drivers indicated their dissatisfaction with the automation by depressing the brake or accelerator pedals. A two-part mixed model examined how automation style, intersection type, and the distance between the automation’s driving style and the person’s driving style affected the frequency and magnitude of their pedal depression. Results: The conservative automated driving style increased the frequency and magnitude of accelerator pedal inputs; conversely, the aggressive style increased the frequency and magnitude of brake pedal inputs. The two-part mixed model showed a similar pattern for the factors influencing driver response, but the distance between driving styles affected how often the brake pedal was pressed, but it had little effect on how much it was pressed. Conclusion: Eliciting brake and accelerator pedal responses provides a temporally precise indicator of drivers’ trust of automated driving styles, and the two-part model considers both the discrete and continuous characteristics of this indicator. Application: We offer a measure and method for assessing driving styles.


Author(s):  
Huiping Zhou ◽  
Makoto Itoh ◽  
Satoshi Kitazaki

This paper presents an adaptive mode (level) transition in highly combined driving automation in which the mode of a system could adaptively shift to any level including SAE level 3 (conditional automation, CA) to level 2 (partial automation) based on the driving environment. We show the effects of the adaptive transition on the take over of car control by a human driver and driving behavior after intervention when the system issues a response to intervene. A driving simulator experiment is conducted to collect data during the transition from automated control to manual driving in three scenes: obstacle on a driving lane, blurred lane mark, and stopped car ahead. Results indicate that the interventions of drivers who experience the adaptive transition are delayed in comparison to those who experience only the fixed transition. The adaptive transition is conducive for drivers to stop the car for preventing a potential collision with a stopped car ahead. Owing to the adaptive transition, drivers perceive a critical hazard after taking over car control and provide a rapid response. In addition, during the adaptive transition, drivers prefer verbal messages to the simple “beeping” message.


Sign in / Sign up

Export Citation Format

Share Document