scholarly journals Information Needs and Visual Attention during Urban, Highly Automated Driving—An Investigation of Potential Influencing Factors

Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 62 ◽  
Author(s):  
Alexander Feierle ◽  
Simon Danner ◽  
Sarah Steininger ◽  
Klaus Bengler

During highly automated driving, the passenger is allowed to conduct non-driving related activities (NDRA) and no longer has to act as a fallback at the functional limits of the driving automation system. Previous research has shown that at lower levels of automation, passengers still wish to be informed about automated vehicle behavior to a certain extent. Due to the aim of the introduction of urban automated driving, which is characterized by high complexity, we investigated the information needs and visual attention of the passenger during urban, highly automated driving. Additionally, there was an investigation into the influence of the experience of automated driving and of NDRAs on these results. Forty participants took part in a driving simulator study. As well as the information presented on the human–machine interface (system status, navigation information, speed and speed limit), participants requested information about maneuvers, reasons for maneuvers, environmental settings and additional navigation data. Visual attention was significantly affected by the NDRA, while the experience of automated driving had no effect. Experience and NDRA showed no significant effect on the need for information. Differences in information needs seem to be due to the requirements of the individual passenger, rather than the investigated factors.

Author(s):  
Wyatt McManus ◽  
Jing Chen

Modern surface transportation vehicles often include different levels of automation. Higher automation levels have the potential to impact surface transportation in unforeseen ways. For example, connected vehicles with higher levels of automation are at a higher risk for hacking attempts, because automated driving assistance systems often rely on onboard sensors and internet connectivity (Amoozadeh et al., 2015). As the automation level of vehicle control rises, it is necessary to examine the effect different levels of automation have on the driver-vehicle interactions. While research into the effect of automation level on driver-vehicle interactions is growing, research into how automation level affects driver’s responses to vehicle hacking attempts is very limited. In addition, auditory warnings have been shown to effectively attract a driver’s attention while performing a driving task, which is often visually demanding (Baldwin, 2011; Petermeijer, Doubek, & de Winter, 2017). An auditory warning can be either speech-based containing sematic information (e.g., “car in blind spot”) or non-sematic (e.g., a tone, or an earcon), which can influence driver behaviors differently (Sabic, Mishler, Chen, & Hu, 2017). The purpose of the current study was to examine the effect of level of automation and warning type on driver responses to novel critical events, using vehicle hacking attempts as a concrete example, in a driving simulator. The current study compared how level of automation (manual vs. automated) and warning type (non-semantic vs. semantic) affected drivers’ responses to a vehicle hacking attempt using time to collision (TTC) values, maximum steering wheel angle, number of successful responses, and other measures of response. A full factorial between-subjects design with the two factors made four conditions (Manual Semantic, Manual Non-Semantic, Automated Semantic, and Automated Non-Semantic). Seventy-two participants recruited using SONA ( odupsychology.sona-systems.com ) completed two simulated drives to school in a driving simulator. The first drive ended with the participant safely arriving at school. A two-second warning was presented to the participants three quarters of the way through the second drive and was immediately followed by a simulated vehicle hacking attempt. The warning either stated “Danger, hacking attempt incoming” in the semantic conditions or was a 500 Hz sine tone in the non-semantic conditions. The hacking attempt lasted five seconds before simulating a crash into a vehicle and ending the simulation if no intervention by the driver occurred. Our results revealed no significant effect of level of automation or warning type on TTC or successful response rate. However, there was a significant effect of level of automation on maximum steering wheel angle. This is a measure of response quality (Shen & Neyens, 2017), such that manual drivers had safer responses to the hacking attempt with smaller maximum steering wheel angles. In addition, an effect of warning type that approached significance was also found for maximum steering wheel angle such that participants who received a semantic warning had more severe and dangerous responses to the hacking attempt. The TTC and successful response results from the current experiment do not match those in the previous literature. The null results were potentially due to the warning implementation time and the complexity of the vehicle hacking attempt. In contrast, the maximum steering wheel angle results indicated that level of automation and warning type affected the safety and severity of the participants’ responses to the vehicle hacking attempt. This suggests that both factors may influence responses to hacking attempts in some capacity. Further research will be required to determine if level of automation and warning type affect participants ability to safely respond to vehicle hacking attempts. Acknowledgments. We are grateful to Scott Mishler for his assistance with STISIM programming and Faye Wakefield, Hannah Smith, and Pettie Perkins for their assistance in data collection.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Frederik Naujoks ◽  
Yannick Forster ◽  
Katharina Wiedemann ◽  
Alexandra Neukum

During conditionally automated driving (CAD), driving time can be used for non-driving-related tasks (NDRTs). To increase safety and comfort of an automated ride, upcoming automated manoeuvres such as lane changes or speed adaptations may be communicated to the driver. However, as the driver’s primary task consists of performing NDRTs, they might prefer to be informed in a nondistracting way. In this paper, the potential of using speech output to improve human-automation interaction is explored. A sample of 17 participants completed different situations which involved communication between the automation and the driver in a motion-based driving simulator. The Human-Machine Interface (HMI) of the automated driving system consisted of a visual-auditory HMI with either generic auditory feedback (i.e., standard information tones) or additional speech output. The drivers were asked to perform a common NDRT during the drive. Compared to generic auditory output, communicating upcoming automated manoeuvres additionally by speech led to a decrease in self-reported visual workload and decreased monitoring of the visual HMI. However, interruptions of the NDRT were not affected by additional speech output. Participants clearly favoured the HMI with additional speech-based output, demonstrating the potential of speech to enhance usefulness and acceptance of automated vehicles.


Author(s):  
Christoph Heimsath ◽  
Werner Krantz ◽  
Jens Neubeck ◽  
Christian Holzapfel ◽  
Andreas Wagner

2020 ◽  
Vol 4 (3) ◽  
pp. 36
Author(s):  
Tobias Hecht ◽  
Simon Danner ◽  
Alexander Feierle ◽  
Klaus Bengler

Current research in human factors and automated driving is increasingly focusing on predictable transitions instead of urgent and critical take-overs. Predictive human–machine interface (HMI) elements displaying the remaining time until the next request to intervene were identified as a user need, especially when the user is engaging in non-driving related activities (NDRA). However, these estimations are prone to errors due to changing traffic conditions and updated map-based information. Thus, we investigated a confidence display for Level 3 automated driving time estimations. Based on a preliminary study, a confidence display resembling a mobile phone connectivity symbol was developed. In a mixed-design driving simulator study with 32 participants, we assessed the impact of the confidence display concept (within factor) on usability, frustration, trust and acceptance during city and highway automated driving (between factor). During automated driving sections, participants engaged in a naturalistic visual NDRA to create a realistic scenario. Significant effects were found for the scenario: participants in the city experienced higher levels of frustration. However, the confidence display has no significant impact on the subjective evaluation and most participants preferred the baseline HMI without a confidence symbol.


Author(s):  
Anna Feldhütter ◽  
Christian Gold ◽  
Adrian Hüger ◽  
Klaus Bengler

Highly automated vehicles (HAV), which could help to enhance road safety and efficiency, are very likely to enter the market within the next decades. To have an impact, these systems need to be purchased, which is a matter of trust and acceptance. These factors are dependent on the level of information that one has about such systems. One important source of information is various media, such as newspapers, magazines and videos, in which highly automated driving (HAD) is currently a frequent topic of discussion. To evaluate the influence of media on the perception of HAD, 31 participants were presented with three different types of media addressing HAD in a neutral manner. Afterwards, the participants experienced HAD in the driving simulator. In between these steps, the participants completed questionnaires assessing comfort, trust in automation, increase in safety, intention to use and other factors in order to analyze the effect of the media and the driving simulation experience. Results indicate that the perception of some aspects of HAD were affected by the media presented, while experiencing HAD in the driving simulator generally did not have an effect on the attitude of the participants. Other aspects, such as trust, were not affected by either media or experience. In addition, gender-related differences in the perception of HAD were found.


Author(s):  
Huiping Zhou ◽  
Makoto Itoh ◽  
Satoshi Kitazaki

This paper presents an adaptive mode (level) transition in highly combined driving automation in which the mode of a system could adaptively shift to any level including SAE level 3 (conditional automation, CA) to level 2 (partial automation) based on the driving environment. We show the effects of the adaptive transition on the take over of car control by a human driver and driving behavior after intervention when the system issues a response to intervene. A driving simulator experiment is conducted to collect data during the transition from automated control to manual driving in three scenes: obstacle on a driving lane, blurred lane mark, and stopped car ahead. Results indicate that the interventions of drivers who experience the adaptive transition are delayed in comparison to those who experience only the fixed transition. The adaptive transition is conducive for drivers to stop the car for preventing a potential collision with a stopped car ahead. Owing to the adaptive transition, drivers perceive a critical hazard after taking over car control and provide a rapid response. In addition, during the adaptive transition, drivers prefer verbal messages to the simple “beeping” message.


Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 73 ◽  
Author(s):  
Tobias Hecht ◽  
Stefan Kratzert ◽  
Klaus Bengler

Automated driving research as a key topic in the automotive industry is currently undergoing change. Research is shifting from unexpected and time-critical take-over situations to human machine interface (HMI) design for predictable transitions. Furthermore, new applications like automated city driving are getting more attention and the ability to engage in non-driving related activities (NDRA) starting from SAE Level 3 automation poses new questions to HMI design. Moreover, future introduction scenarios and automated capabilities are still unclear. Thus, we designed, executed, and assessed a driving simulator study focusing on the effect of different transition frequencies and a predictive HMI while freely engaging in naturalistic NDRA. In the study with 33 participants, we found transition frequency to have effects on workload and acceptance, as well as a small impact on the usability evaluation of the system. Trust, however, was not affected. The predictive HMI was used and accepted, as can be seen by eye-tracking data and the post-study questionnaire, but could not mitigate the above-mentioned negative effects induced by transition frequency. Most attractive activities were window gazing, chatting, phone use, and reading magazines. Descriptively, window gazing and chatting gained attractiveness when interrupted more often, while reading magazines and playing games were negatively affected by transition rate.


Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 115 ◽  
Author(s):  
Marlene Susanne Lisa Scharfe ◽  
Kathrin Zeeb ◽  
Nele Russwinkel

In the development of highly automated driving systems (L3 and 4), much research has been done on the subject of driver takeover. Strong focus has been placed on the takeover quality. Previous research has shown that one of the main influencing factors is the complexity of a traffic situation that has not been sufficiently addressed so far, as different approaches towards complexity exist. This paper differentiates between the objective complexity and the subjectively perceived complexity. In addition, the familiarity with a takeover situation is examined. Gold et al. show that repetition of takeover scenarios strongly influences the take-over performance. Yet, both complexity and familiarity have not been considered at the same time. Therefore, the aim of the present study is to examine the impact of objective complexity and familiarity on the subjectively perceived complexity and the resulting takeover quality. In a driving simulator study, participants are requested to take over vehicle control in an uncritical situation. Familiarity and objective complexity are varied by the number of surrounding vehicles and scenario repetitions. Subjective complexity is measured using the NASA-TLX; the takeover quality is gathered using the take-over controllability rating (TOC-Rating). The statistical evaluation results show that the parameters significantly influence the takeover quality. This is an important finding for the design of cognitive assistance systems for future highly automated and intelligent vehicles.


Sign in / Sign up

Export Citation Format

Share Document