An outbreak of yellow fever with concurrent chikungunya virus transmission in South Kordofan, Sudan, 2005

Author(s):  
L. Hannah Gould ◽  
Magdi S. Osman ◽  
Eileen C. Farnon ◽  
Kevin S. Griffith ◽  
Marvin S. Godsey ◽  
...  
Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1475
Author(s):  
Moussa Moïse Diagne ◽  
Marie Henriette Dior Ndione ◽  
Alioune Gaye ◽  
Mamadou Aliou Barry ◽  
Diawo Diallo ◽  
...  

Yellow fever virus remains a major threat in low resource countries in South America and Africa despite the existence of an effective vaccine. In Senegal and particularly in the eastern part of the country, periodic sylvatic circulation has been demonstrated with varying degrees of impact on populations in perpetual renewal. We report an outbreak that occurred from October 2020 to February 2021 in eastern Senegal, notified and managed through the synergistic effort yellow fever national surveillance implemented by the Senegalese Ministry of Health in collaboration with the World Health Organization, the countrywide 4S network set up by the Ministry of Health, the Institut Pasteur de Dakar, and the surveillance of arboviruses and hemorrhagic fever viruses in human and vector populations implemented since mid 2020 in eastern Senegal. Virological analyses highlighted the implication of sylvatic mosquito species in virus transmission. Genomic analysis showed a close relationship between the circulating strain in eastern Senegal, 2020, and another one from the West African lineage previously detected and sequenced two years ago from an unvaccinated Dutch traveler who visited the Gambia and Senegal before developing signs after returning to Europe. Moreover, genome analysis identified a 6-nucleotide deletion in the variable domain of the 3′UTR with potential impact on the biology of the viral strain that merits further investigations. Integrated surveillance of yellow fever virus but also of other arboviruses of public health interest is crucial in an ecosystem such as eastern Senegal.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 177 ◽  
Author(s):  
Tereza Magalhaes ◽  
Alexis Robison ◽  
Michael Young ◽  
William Black ◽  
Brian Foy ◽  
...  

In urban settings, chikungunya, Zika, and dengue viruses are transmitted by Aedes aegypti mosquitoes. Since these viruses co-circulate in several regions, coinfection in humans and vectors may occur, and human coinfections have been frequently reported. Yet, little is known about the molecular aspects of virus interactions within hosts and how they contribute to arbovirus transmission dynamics. We have previously shown that Aedes aegypti exposed to chikungunya and Zika viruses in the same blood meal can become coinfected and transmit both viruses simultaneously. However, mosquitoes may also become coinfected by multiple, sequential feeds on single infected hosts. Therefore, we tested whether sequential infection with chikungunya and Zika viruses impacts mosquito vector competence. We exposed Ae. aegypti mosquitoes first to one virus and 7 days later to the other virus and compared infection, dissemination, and transmission rates between sequentially and single infected groups. We found that coinfection rates were high after sequential exposure and that mosquitoes were able to co-transmit both viruses. Surprisingly, chikungunya virus coinfection enhanced Zika virus transmission 7 days after the second blood meal. Our data demonstrate heterologous arbovirus synergism within mosquitoes, by unknown mechanisms, leading to enhancement of transmission under certain conditions.


2018 ◽  
Author(s):  
Faria N. R. ◽  
Kraemer M. U. G. ◽  
Hill S. C. ◽  
Goes de Jesus J. ◽  
de Aguiar R. S. ◽  
...  

AbstractThe yellow fever virus (YFV) epidemic that began in Dec 2016 in Brazil is the largest in decades. The recent discovery of YFV in BrazilianAedes sp.vectors highlights the urgent need to monitor the risk of re-establishment of domestic YFV transmission in the Americas. We use a suite of epidemiological, spatial and genomic approaches to characterize YFV transmission. We show that the age- and sex-distribution of human cases in Brazil is characteristic of sylvatic transmission. Analysis of YFV cases combined with genomes generated locally using a new protocol reveals an early phase of sylvatic YFV transmission restricted to Minas Gerais, followed in late 2016 by a rise in viral spillover to humans, and the southwards spatial expansion of the epidemic towards previously YFV-free areas. Our results establish a framework for monitoring YFV transmission in real-time, contributing to the global strategy of eliminating future yellow fever epidemics.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Natalia Ingrid Oliveira Silva ◽  
Lívia Sacchetto ◽  
Izabela Maurício de Rezende ◽  
Giliane de Souza Trindade ◽  
Angelle Desiree LaBeaud ◽  
...  

2019 ◽  
Vol 268 ◽  
pp. 53-55 ◽  
Author(s):  
José A. Boga ◽  
Marta E. Alvarez-Arguelles ◽  
Susana Rojo-Alba ◽  
Mercedes Rodríguez ◽  
María de Oña ◽  
...  

2013 ◽  
Vol 8 (10) ◽  
pp. 1934578X1300801 ◽  
Author(s):  
Md Abubakr ◽  
Subhash C Mandal ◽  
Sugato Banerjee

Arthropod borne flaviviral diseases are a major public health concern in the tropics. However, the majority of cases are associated with Dengue virus (DENV), Yellow Fever virus (YFV), West Nile virus (WNV) and Chikungunya virus (CHIKV) infections. Despite their profound clinical and economic impact among large sections of the population there is a lack of effective treatment against these diseases. A large number of plants are available in nature, which may act as a source for lead molecules against various diseases including arthropod borne flaviviral infections. In this review we discuss various crude extracts as well as purified compounds from natural sources with promising anti-DENV, YFV, WNV and CHIKV activity.


Transfusion ◽  
2019 ◽  
Vol 59 (8) ◽  
pp. 2612-2621 ◽  
Author(s):  
Hatsadee Appassakij ◽  
Paiwon Khuntikij ◽  
Khachornsakdi Silpapojakul ◽  
Charuporn Promwong ◽  
Pairaya Rujirojindakul ◽  
...  

1977 ◽  
Vol 26 (5) ◽  
pp. 985-989 ◽  
Author(s):  
Thomas H. G. Aitken ◽  
Robert E. Shope ◽  
Wilbur G. Downs

Sign in / Sign up

Export Citation Format

Share Document