Epitaxial growth of cubic silicon carbide on silicon using hot filament chemical vapor deposition

2017 ◽  
Vol 635 ◽  
pp. 48-52 ◽  
Author(s):  
Philip Hens ◽  
Ryan Brow ◽  
Hannah Robinson ◽  
Michael Cromar ◽  
Bart Van Zeghbroeck
2007 ◽  
Vol 46 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Chandan Banerjee ◽  
Kannan Lakshmi Narayanan ◽  
Keisuke Haga ◽  
Jaran Sritharathikhun ◽  
Shinsuke Miyajima ◽  
...  

2017 ◽  
Vol 897 ◽  
pp. 91-94
Author(s):  
Philip Hens ◽  
Ryan Brow ◽  
Hannah Robinson ◽  
Michael Cromar ◽  
Bart van Zeghbroeck

In this paper, we report, for the first time, growth of high-quality single-crystalline 3C-SiC on silicon substrates using Hot Filament Chemical Vapor Deposition (HF-CVD). Rocking curve X-Ray diffraction (XRD) measurements revealed a full-width at half maximum (FWHM) as low as 333 arcsec for a 15 μm thick layer. Low tensile strain, below 0.1%, was measured using Raman spectroscopy. This quality was achieved with a carefully optimized process making use of the additional degrees of freedom the hot filaments create. For example, the hot filaments allow for precursor pre-cracking. Additionally, they allow a tuning of the vertical thermal gradient which creates an improved thermal field compared to classic Chemical Vapor Deposition techniques used for the deposition of this material today.


1998 ◽  
Vol 13 (7) ◽  
pp. 1738-1740 ◽  
Author(s):  
H. K. Woo ◽  
C. S. Lee ◽  
I. Bello ◽  
S. T. Lee

Epitaxial β–SiC film has been grown on a mirror-polished Si(111) substrate using bias-assisted hot filament chemical vapor deposition (BA-HFCVD) at a substrate temperature of 1000 °C. A graphite plate was used as the only carbon source, and hydrogen was the only feeding gas to the deposition system. Atomic hydrogen, produced by hot filaments, reacted with the graphite to form hydrocarbon radicals which further reacted with the silicon substrate and deposited as β–SiC. The effect of negatively biasing the substrate is the key factor for epitaxial growth. Under the same growth conditions without negative bias, polycrystalline β–SiC resulted.


MRS Advances ◽  
2017 ◽  
Vol 2 (5) ◽  
pp. 289-294 ◽  
Author(s):  
Philip Hens ◽  
Ryan Brow ◽  
Hannah Robinson ◽  
Bart Van Zeghbroeck

ABSTRACTFor the first time, we are reporting the growth of high quality single crystalline 3C-SiC epitaxially on hexagonal silicon carbide substrates using Hot Filament Chemical Vapor Deposition (HF-CVD) on full 4” wafers. Rocking curve X-Ray diffraction (XRD) measurements resulted in a full width at half maximum (FWHM) as low as 88 arcsec for a 40 µm thick layer. We achieved this quality using a carefully optimized process making use of the additional degrees of freedom the hot filaments create. The filaments allow for precursor pre-cracking and a tuning of the vertical thermal gradient, which creates an improved thermal field compared to conventional Chemical Vapor Deposition. Growth rates of up to 8 µm/h were achieved with standard silane and propane chemistry, and further increased to 20 µm/h with chlorinated chemistry. The use of silicon carbide substrates promises superior layer quality compared to silicon substrates due to their better match in lattice parameters and thermal expansion coefficients. High resolution scanning electron microscopy, X-Ray rocking measurements, and micro-Raman allow us to assess the crystalline quality of our material and to compare it to layers grown on low-cost silicon substrates. Hall measurements reveal a linear increase of the charge carrier density in the material with the flow of nitrogen gas as a dopant. Electron densities above 10-18 cm-3 have been reached.


Sign in / Sign up

Export Citation Format

Share Document