Epitaxial growth of β–SiC on silicon by bias-assisted hot filament chemical vapor deposition from solid graphite and silicon sources

1998 ◽  
Vol 13 (7) ◽  
pp. 1738-1740 ◽  
Author(s):  
H. K. Woo ◽  
C. S. Lee ◽  
I. Bello ◽  
S. T. Lee

Epitaxial β–SiC film has been grown on a mirror-polished Si(111) substrate using bias-assisted hot filament chemical vapor deposition (BA-HFCVD) at a substrate temperature of 1000 °C. A graphite plate was used as the only carbon source, and hydrogen was the only feeding gas to the deposition system. Atomic hydrogen, produced by hot filaments, reacted with the graphite to form hydrocarbon radicals which further reacted with the silicon substrate and deposited as β–SiC. The effect of negatively biasing the substrate is the key factor for epitaxial growth. Under the same growth conditions without negative bias, polycrystalline β–SiC resulted.

2013 ◽  
Vol 740-742 ◽  
pp. 251-254
Author(s):  
Milan Yazdanfar ◽  
Pontus Stenberg ◽  
Ian D. Booker ◽  
Ivan.G Ivanov ◽  
Henrik Pedersen ◽  
...  

Epitaxial growth of about 200 µm thick, low doped 4H-SiC layers grown on n-type 8° off-axis Si-face substrates at growth rates around 100 µm/h has been done in order to realize thick epitaxial layers with excellent morphology suitable for high power devices. The study was done in a hot wall chemical vapor deposition reactor without rotation. The growth of such thick layers required favorable pre-growth conditions and in-situ etch. The growth of 190 µm thick, low doped epitaxial layers with excellent morphology was possible when the C/Si ratio was below 0.9. A low C/Si ratio and a favorable in-situ etch are shown to be the key parameters to achieve 190 µm thick epitaxial layers with excellent morphology.


2006 ◽  
Vol 45 (8A) ◽  
pp. 6517-6523 ◽  
Author(s):  
Naoki Koizumi ◽  
Yusuke Minorikawa ◽  
Hiroyuki Yakabe ◽  
Hideki Kimura ◽  
Tateki Kurosu ◽  
...  

2017 ◽  
Vol 635 ◽  
pp. 48-52 ◽  
Author(s):  
Philip Hens ◽  
Ryan Brow ◽  
Hannah Robinson ◽  
Michael Cromar ◽  
Bart Van Zeghbroeck

2009 ◽  
Vol 615-617 ◽  
pp. 105-108 ◽  
Author(s):  
Rachael L. Myers-Ward ◽  
Brenda L. VanMil ◽  
Robert E. Stahlbush ◽  
S.L. Katz ◽  
J.M. McCrate ◽  
...  

Epitaxial layers were grown on 4° off-axis 4H-SiC substrates by hot-wall chemical vapor deposition. The reduced off-cut angle resulted in lower basal plane dislocation (BPD) densities. The dependence of BPD reduction on growth conditions was investigated using ultraviolet photoluminescence (UVPL) imaging. With this method, it was found that the dislocations were converting to threading edge dislocations throughout the thickness of the film. A high (≥ 97%) conversion efficiency was found for all films grown with this orientation. A conversion of 100% was achieved for several films without pre-growth treatments or growth interrupts.


2015 ◽  
Vol 48 (6) ◽  
pp. 104-109
Author(s):  
Youn-Joon Baik ◽  
Do-Hyun Kwon ◽  
Jong-Keuk Park ◽  
Wook-Seong Lee

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 426
Author(s):  
Byeong-Kwan Song ◽  
Hwan-Young Kim ◽  
Kun-Su Kim ◽  
Jeong-Woo Yang ◽  
Nong-Moon Hwang

Although the growth rate of diamond increased with increasing methane concentration at the filament temperature of 2100 °C during a hot filament chemical vapor deposition (HFCVD), it decreased with increasing methane concentration from 1% CH4 –99% H2 to 3% CH4 –97% H2 at 1900 °C. We investigated this unusual dependence of the growth rate on the methane concentration, which might give insight into the growth mechanism of a diamond. One possibility would be that the high methane concentration increases the non-diamond phase, which is then etched faster by atomic hydrogen, resulting in a decrease in the growth rate with increasing methane concentration. At 3% CH4 –97% H2, the graphite was coated on the hot filament both at 1900 °C and 2100 °C. The graphite coating on the filament decreased the number of electrons emitted from the hot filament. The electron emission at 3% CH4 –97% H2 was 13 times less than that at 1% CH4 –99% H2 at the filament temperature of 1900 °C. The lower number of electrons at 3% CH4 –97% H2 was attributed to the formation of the non-diamond phase, which etched faster than diamond, resulting in a lower growth rate.


2003 ◽  
Vol 372 (3-4) ◽  
pp. 320-324 ◽  
Author(s):  
Y.H Tang ◽  
X.T Zhou ◽  
Y.F Hu ◽  
C.S Lee ◽  
S.T Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document