Photocurrent decay from the steady-state in thin film hydrogenated amorphous silicon: Numerical simulation analysis of experimental results

2020 ◽  
Vol 696 ◽  
pp. 137793
Author(s):  
Javier A. Schmidt ◽  
David M. Goldie
1992 ◽  
Vol 258 ◽  
Author(s):  
Seong K. Lee ◽  
Jin S. Park ◽  
Yong S. Kim ◽  
Jung R. Hwang ◽  
Chang H. Oh ◽  
...  

ABSTRACTThe experimental results regarding to the effects of ultraviolet (UV) light illumination on the characteristics of hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFT's) have been presented. The device parameters of a-Si:H TFT, such as threshold voltage, field-effect mobility, and subthreshold slope, have been degraded by electrical stress and visible light illumination, but substantially improved by UV radiation. This may be attributed to an annealing effect on the dangling-bond defects, involving a number of phonons generated by absorption of high energy UV photons in the a-Si:H TFT channel. It has been also observed that the off-current of a-Si:H TFT decreases remarkably while the on-current changes very little. From the experimental results, we report that the improved on/off current ratio of a-Si:H TFT may be achieved by UV radiation.


2008 ◽  
Vol 1066 ◽  
Author(s):  
Kyung-Wook Shin ◽  
Mohammad R. Esmaeili-Rad ◽  
Andrei Sazonov ◽  
Arokia Nathan

ABSTRACTHydrogenated nanocrystalline silicon (nc-Si:H) has strong potential to replace the hydrogenated amorphous silicon (a-Si:H) in thin film transistors (TFTs) due to its compatibility with the current industrial a-Si:H processes, and its better threshold voltage stability [1]. In this paper, we present an experimental TFT array backplane for direct conversion X-ray detector, using inverted staggered bottom gate nc-Si:H TFT as switching element. The TFTs employed a nc-Si:H/a-Si:H bilayer as the channel layer and hydrogenated amorphous silicon nitride (a-SiNx) as the gate dielectric; both layers deposited by plasma enhanced chemical vapor deposition (PECVD) at 280°C. Each pixel consists of a switching TFT, a charge storage capacitor (Cpx), and a mushroom electrode which serves as the bottom contact for X-ray detector such as amorphous selenium photoconductor. The chemical composition of the a-SiNx was studied by Fourier transform infrared spectroscopy. Current-voltage measurements of the a-SiNx film demonstrate that a breakdown field of 4.3 MV/cm.. TFTs in the array exhibits a field effect mobility (μEF) of 0.15 cm2/V·s, a threshold voltage (VTh) of 5.71 V, and a subthreshold leakage current (Isub) of 10−10 A. The fabrication sequence and TFT characteristics will be discussed in details.


1991 ◽  
Vol 69 (4) ◽  
pp. 2339-2345 ◽  
Author(s):  
J. Kanicki ◽  
F. R. Libsch ◽  
J. Griffith ◽  
R. Polastre

Sign in / Sign up

Export Citation Format

Share Document