scholarly journals Large scale structures in chemical vapor deposition-grown graphene on Ni thin films

2020 ◽  
Vol 709 ◽  
pp. 138225
Author(s):  
Derya Ataç ◽  
Johnny G.M. Sanderink ◽  
Sachin Kinge ◽  
Dirk J. Gravesteijn ◽  
Alexey Y. Kovalgin ◽  
...  
1996 ◽  
Vol 427 ◽  
Author(s):  
Dong-Chan Kim ◽  
Young-Soung Kim ◽  
Seung-Ki Joo

AbstractAn aluminum thin film for ultra large scale integrated circuits(ULSI) metalization has been formed by PACVD using DMEAA(Dimethylethylamine alane) as a precursor. The selectivity was lost but the conformal step coverage was still maintained when the hydrogen plasma was added to conventional CVD process so that perfectly planarized metalization could be obtained.Comparing to thermal CVD, the reflectivity as well as the resistivity could be much improved especially when the film was deposited on SiO2. The deposition rate and the resistivity of PACVD Al thin films deposited on various substrates such as Si, TiN and SiO2 were compared with those of thermal CVD Al thin films.


MRS Advances ◽  
2016 ◽  
Vol 1 (55) ◽  
pp. 3667-3672 ◽  
Author(s):  
D. Convertino ◽  
A. Rossi ◽  
V. Miseikis ◽  
V. Piazza ◽  
C. Coletti

ABSTRACTThis work presents a comparison of the structural, chemical and electronic properties of multi-layer graphene grown on SiC(000-1) by using two different growth approaches: thermal decomposition and chemical vapor deposition (CVD). The topography of the samples was investigated by using atomic force microscopy (AFM), and scanning electron microscopy (SEM) was performed to examine the sample on a large scale. Raman spectroscopy was used to assess the crystallinity and electronic behavior of the multi-layer graphene and to estimate its thickness in a non-invasive way. While the crystallinity of the samples obtained with the two different approaches is comparable, our results indicate that the CVD method allows for a better thickness control of the grown graphene.


1999 ◽  
Vol 606 ◽  
Author(s):  
Spyridon Skordas ◽  
George Sirinakis ◽  
Wen Yu ◽  
Di Wu ◽  
Haralabos Efstathiadis ◽  
...  

AbstractSilicon nitride technology has been incorporated in ultra-large scale integration (ULSI) microchip fabrication, thin film transistors (TFT), solar cells, and many other applications in a rapidly expanding market. Nevertheless, silicon nitride technologies currently in use face considerable limitations. Low pressure chemical vapor deposition (LPCVD) occurs at relatively high temperature (>700 °C) and plasma enhanced chemical vapor deposition (PECVD), although occurring at temperatures below 300 °C, produces hydrogen-rich films and could be self-limiting in terms of conformality and damage to the devices due to ion bombardment. In the present work, successful low temperature thermal chemical vapor deposition (LTCVD) of silicon nitride is reported on 8” silicon wafers. The use of a halide-based silicon precursor, tetraiodosilane (SiI4) has led to the deposition of high quality silicon nitride thin films at temperatures as low as 300 °C.Characterization of resulting film properties has been performed to determine their dependence on deposition parameters by Auger Electron Spectroscopy (AES), Rutherford Backscattering Spectroscopy (RBS), Fourier Transform Infrared (FTIR), Nuclear Reaction Analysis (NRA), Ellipsometry, Capacitance-Voltage (C-V), and Current-Voltage (I-V) measurements.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1839
Author(s):  
Tuqeer Nasir ◽  
Bum Jun Kim ◽  
Muhammad Hassnain ◽  
Sang Hoon Lee ◽  
Byung Joo Jeong ◽  
...  

Chemical vapor deposition of graphene on transition metals is the most favored method to get large scale homogenous graphene films to date. However, this method involves a very critical step of transferring as grown graphene to desired substrates. A sacrificial polymer film is used to provide mechanical and structural support to graphene, as it is detached from underlying metal substrate, but, the residue and cracks of the polymer film after the transfer process affects the properties of the graphene. Herein, a simple mixture of polystyrene and low weight plasticizing molecules is reported as a suitable candidate to be used as polymer support layer for transfer of graphene synthesized by chemical vapor deposition (CVD). This combination primarily improves the flexibility of the polystyrene to prevent cracking during the transfer process. In addition, the polymer removal solvent can easily penetrate between the softener molecules, so that the polymer film can be easily dissolved after transfer of graphene, thereby leaving no residue. This facile method can be used freely for the large-scale transfer of 2D materials.


2018 ◽  
Vol 10 (3) ◽  
pp. 03001-1-03001-6 ◽  
Author(s):  
Bharat Gabhale ◽  
◽  
Ashok Jadhawar ◽  
Ajinkya Bhorde ◽  
Shruthi Nair ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document