Impact of annealing temperature and carbon doping on the wetting and surface morphology of semiconducting iron disilicide formed via radio frequency magnetron sputtering

2020 ◽  
Vol 709 ◽  
pp. 138248
Author(s):  
Peerasil Charoenyuenyao ◽  
Nathaporn Promros ◽  
Rawiwan Chaleawpong ◽  
Nattakorn Borwornpornmetee ◽  
Pattarapol Sittisart ◽  
...  
Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 373
Author(s):  
Wen-Yen Lin ◽  
Feng-Tsun Chien ◽  
Hsien-Chin Chiu ◽  
Jinn-Kong Sheu ◽  
Kuang-Po Hsueh

Zirconium-doped MgxZn1−xO (Zr-doped MZO) mixed-oxide films were investigated, and the temperature sensitivity of their electric and optical properties was characterized. Zr-doped MZO films were deposited through radio-frequency magnetron sputtering using a 4-inch ZnO/MgO/ZrO2 (75/20/5 wt%) target. Hall measurement, X-ray diffraction (XRD), transmittance, and X-ray photoelectron spectroscopy (XPS) data were obtained. The lowest sheet resistance, highest mobility, and highest concentration were 1.30 × 103 Ω/sq, 4.46 cm2/Vs, and 7.28 × 1019 cm−3, respectively. The XRD spectra of the as-grown and annealed Zr-doped MZO films contained MgxZn1−xO(002) and ZrO2(200) coupled with Mg(OH)2(101) at 34.49°, 34.88°, and 38.017°, respectively. The intensity of the XRD peak near 34.88° decreased with temperature because the films that segregated Zr4+ from ZrO2(200) increased. The absorption edges of the films were at approximately 348 nm under 80% transmittance because of the Mg content. XPS revealed that the amount of Zr4+ increased with the annealing temperature. Zr is a potentially promising double donor, providing up to two extra free electrons per ion when used in place of Zn2+.


2011 ◽  
Vol 311-313 ◽  
pp. 1258-1261
Author(s):  
Hao Lv ◽  
Yao Ming Ding ◽  
Ai Mei Liu ◽  
Ju Fang Tong ◽  
Xu Nong Yi ◽  
...  

Silicon dioxide films; radio-frequency magnetron sputtering; annealing temperature Abstract. Silicon dioxide (SiO2) films are fabricated on single crystal silicon substrate by radio-frequency magnetron sputtering (RFMS) technique and annealed in electric furnaces at 800°C and 1180°C to form uniform, transparent and compact silica. The surface morphology and roughness of the films are characterized by an atomic force microscopy (AFM). X-ray diffraction (XRD) is employed to analyze the crystalline of the thin films. The chemical composition after annealing is analyzed using X-ray photoelectron spectroscopy (XPS).


2015 ◽  
Vol 1105 ◽  
pp. 74-77 ◽  
Author(s):  
Xiao Lin Ji ◽  
Hai Dong Ju ◽  
Tao Yu Zou ◽  
Jin Long Luo ◽  
Kun Quan Hong ◽  
...  

Copper nitride thin films were prepared by reactive radio frequency magnetron sputtering at different sputtering pressures with fixed nitrogen to argon ratio. The influences of sputtering pressure on the structure, optical band gap, and surface morphology of films were investigated. The results show that the preferential orientation of polycrystalline Cu3N thin films changes from [111] to [100] when the sputtering pressure increases. Meanwhile, the optical band gap (Eg) of Cu3N thin films increases with the sputtering pressure. The surface morphology of Cu3N thin film deposited at high sputtering pressure becomes smoother than that of Cu3N thin film deposited at low sputtering pressure.


Sign in / Sign up

Export Citation Format

Share Document